{"title":"Study on thermal conductivity of boron nitride in hexagonal structure in atomistic scale by using Non-Equilibrium Molecular Dynamics technique","authors":"B. Platek, T. Falat, J. Felba","doi":"10.1109/EUROSIME.2013.6529969","DOIUrl":null,"url":null,"abstract":"In this paper study on algorithms for evaluation the thermal conductivity of nanomaterials by using molecular dynamics technique was presented. First one is based on algorithm proposed by Ikeshoji and Hafskjold, the second one is developed by authors. As a reference material the boron nitride in hexagonal form was taken into consideration. The heat transfer was studied in-plane of BN layers as well as through-plane. From the results can be concluded that the Ikeshoji's algorithm was better for the structure with low thermal conductivity (through-plane of BN) while for the structure with higher conductivity (in-plane of BN) better results gave algorithm proposed by authors.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper study on algorithms for evaluation the thermal conductivity of nanomaterials by using molecular dynamics technique was presented. First one is based on algorithm proposed by Ikeshoji and Hafskjold, the second one is developed by authors. As a reference material the boron nitride in hexagonal form was taken into consideration. The heat transfer was studied in-plane of BN layers as well as through-plane. From the results can be concluded that the Ikeshoji's algorithm was better for the structure with low thermal conductivity (through-plane of BN) while for the structure with higher conductivity (in-plane of BN) better results gave algorithm proposed by authors.