{"title":"Construction of Student model based on BP neural network","authors":"Y. Liu, Yuanyuan Zhang, Guoqing Zhang","doi":"10.1109/ICIIBMS46890.2019.8991446","DOIUrl":null,"url":null,"abstract":"With the development of personalized learning, the construction of student models is becoming more and more important. At present, there are still problems in the student model that the characteristics are single and the indicators of each dimension are not clear. In this paper, learners will be analyzed from the perspective of student characteristics. And BP (Back Propagation) neural network algorithm will be used to establish a personalized student model. This paper first constructs the feature system of the student model from six dimensions. Secondly, the initial data is obtained through questionnaire survey, and the data is initialized to obtain 30 feature vectors as input to BP neural network. The output of the network is a learner type, which is divided into 36 categories. The construction of the student model will have certain practical significance for realizing the effectiveness of personalized education in distance education.","PeriodicalId":444797,"journal":{"name":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS46890.2019.8991446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of personalized learning, the construction of student models is becoming more and more important. At present, there are still problems in the student model that the characteristics are single and the indicators of each dimension are not clear. In this paper, learners will be analyzed from the perspective of student characteristics. And BP (Back Propagation) neural network algorithm will be used to establish a personalized student model. This paper first constructs the feature system of the student model from six dimensions. Secondly, the initial data is obtained through questionnaire survey, and the data is initialized to obtain 30 feature vectors as input to BP neural network. The output of the network is a learner type, which is divided into 36 categories. The construction of the student model will have certain practical significance for realizing the effectiveness of personalized education in distance education.