Path planning algorithm for space manipulator with a minimum energy demand

Wingkwong Chung, Yangsheng Xu
{"title":"Path planning algorithm for space manipulator with a minimum energy demand","authors":"Wingkwong Chung, Yangsheng Xu","doi":"10.1109/ROBIO.2012.6491189","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology to plan a global path for the gaits of space manipulators with a minimum total energy demand. Different from conventional approaches, we propose the consideration of the motions composition for a manipulator to plan a path. For the path planning problem, it is first modeled as a Traveling Salesman Problem (TSP) and the optimization goal is to search a path with a minimum energy demand. After that, the individual energy demand of different gaits of a space manipulator is estimated and analyzed. To solve the optimization problem, conventional genetic algorithm (GA) is utilized. To enhance the performance of GA, we design and develop a novel genetic operator, called Planar-NN. It aims to search a solution path with more motion primitives which contribute a lower energy demand. To evaluate the performance of the proposed algorithm, numerous simulations are performed. Results show that it can search a path with the lowest total energy demand.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a methodology to plan a global path for the gaits of space manipulators with a minimum total energy demand. Different from conventional approaches, we propose the consideration of the motions composition for a manipulator to plan a path. For the path planning problem, it is first modeled as a Traveling Salesman Problem (TSP) and the optimization goal is to search a path with a minimum energy demand. After that, the individual energy demand of different gaits of a space manipulator is estimated and analyzed. To solve the optimization problem, conventional genetic algorithm (GA) is utilized. To enhance the performance of GA, we design and develop a novel genetic operator, called Planar-NN. It aims to search a solution path with more motion primitives which contribute a lower energy demand. To evaluate the performance of the proposed algorithm, numerous simulations are performed. Results show that it can search a path with the lowest total energy demand.
空间机械臂能量需求最小的路径规划算法
提出了一种总能量需求最小的空间机械臂步态全局路径规划方法。与传统方法不同的是,我们提出了考虑机械手运动组成来规划路径的方法。对于路径规划问题,首先将其建模为旅行商问题(TSP),优化目标是搜索能量需求最小的路径。在此基础上,对空间机械臂不同步态的个体能量需求进行了估计和分析。为了解决优化问题,采用传统的遗传算法(GA)。为了提高遗传算法的性能,我们设计并开发了一种新的遗传算子Planar-NN。它的目标是寻找具有更多运动原语的解决路径,这些原语有助于降低能量需求。为了评估该算法的性能,进行了大量的仿真。结果表明,该算法能够搜索到总能量需求最小的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信