Ultrasonic tactile sensor integrated with TFT array for contact force measurements

C. Chuang, H. Weng, J. Cheng, M. Shaikh
{"title":"Ultrasonic tactile sensor integrated with TFT array for contact force measurements","authors":"C. Chuang, H. Weng, J. Cheng, M. Shaikh","doi":"10.1109/TRANSDUCERS.2017.7994098","DOIUrl":null,"url":null,"abstract":"In this study, we propose an ultrasonic tactile sensor for real time contact force measurements and high-resolution shape recognition to enable safe and reliable robotic grasping of objects that may vary in compliance or texture. The sensing mechanism utilizes piezoelectric transduction where an AC signal is applied to a polyvinylidene fluoride (PVDF) thin film to generate pulses of ultrasound waves that travel upwards through the sensor components to the contact interface while a receiver PVDF thin film detects the reflected waves and produces a localized voltage output that is detected by the TFT (Thin-Film Transistor) array layer. The ability of the tactile sensor to detect contact forces can be attributed to the sensor surface having a thin compliant PDMS layer with a microstructure array. When the sensor contacts objects, the microstructures act as force concentrators, resulting in the localized deformation of the PDMS layer and an observed linear response to normal static forces in the range of 1 to 6 N. The TFT array output after signal processing produces a two-dimensional grayscale image that enables not only high-resolution imaging but also contact force information for improved robotic grasping performance.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, we propose an ultrasonic tactile sensor for real time contact force measurements and high-resolution shape recognition to enable safe and reliable robotic grasping of objects that may vary in compliance or texture. The sensing mechanism utilizes piezoelectric transduction where an AC signal is applied to a polyvinylidene fluoride (PVDF) thin film to generate pulses of ultrasound waves that travel upwards through the sensor components to the contact interface while a receiver PVDF thin film detects the reflected waves and produces a localized voltage output that is detected by the TFT (Thin-Film Transistor) array layer. The ability of the tactile sensor to detect contact forces can be attributed to the sensor surface having a thin compliant PDMS layer with a microstructure array. When the sensor contacts objects, the microstructures act as force concentrators, resulting in the localized deformation of the PDMS layer and an observed linear response to normal static forces in the range of 1 to 6 N. The TFT array output after signal processing produces a two-dimensional grayscale image that enables not only high-resolution imaging but also contact force information for improved robotic grasping performance.
超声波触觉传感器集成与TFT阵列接触力测量
在这项研究中,我们提出了一种用于实时接触力测量和高分辨率形状识别的超声波触觉传感器,以使机器人能够安全可靠地抓取可能在顺应性或纹理上变化的物体。传感机制利用压电转导,其中将交流信号施加到聚偏氟乙烯(PVDF)薄膜上,产生向上通过传感器组件传播到接触界面的超声波脉冲,而接收器PVDF薄膜检测反射波并产生局部电压输出,该输出由TFT(薄膜晶体管)阵列层检测。触觉传感器检测接触力的能力可归因于传感器表面具有具有微结构阵列的薄柔性PDMS层。当传感器接触物体时,微结构充当力集中器,导致PDMS层局部变形,并观察到1至6 n范围内的法向静力的线性响应。信号处理后的TFT阵列输出产生二维灰度图像,不仅可以实现高分辨率成像,还可以获得接触力信息,以提高机器人的抓取性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信