Assessing the similarity between time series using a Wavelet transform: Application and interpretability aspects

T. Rocha, Simão Paredes, P. Carvalho, J. Henriques
{"title":"Assessing the similarity between time series using a Wavelet transform: Application and interpretability aspects","authors":"T. Rocha, Simão Paredes, P. Carvalho, J. Henriques","doi":"10.1109/BHI.2014.6864448","DOIUrl":null,"url":null,"abstract":"This work presents a simple and interpretable measure to evaluate the similarity between biosignal time series. Combining the Haar wavelet with the Karhunen Loève transforms, the proposed similarity measure is particularly appropriated to deal with noisy signals, with signals that are not time aligned as well as to recognize similar trends. When applied to an indexing scheme, an iterative formulation enables a very efficient computational implementation. Experimental and simulation results using blood pressure signals collected by a telemonitoring platform (TEN-HMS) show the effectiveness of the proposed scheme.","PeriodicalId":177948,"journal":{"name":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2014.6864448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents a simple and interpretable measure to evaluate the similarity between biosignal time series. Combining the Haar wavelet with the Karhunen Loève transforms, the proposed similarity measure is particularly appropriated to deal with noisy signals, with signals that are not time aligned as well as to recognize similar trends. When applied to an indexing scheme, an iterative formulation enables a very efficient computational implementation. Experimental and simulation results using blood pressure signals collected by a telemonitoring platform (TEN-HMS) show the effectiveness of the proposed scheme.
用小波变换评估时间序列之间的相似性:应用和可解释性方面
这项工作提出了一个简单的和可解释的措施来评估生物信号时间序列之间的相似性。将Haar小波与Karhunen lo变换相结合,提出的相似性度量特别适用于处理噪声信号、非时间排列信号以及识别相似趋势。当应用于索引方案时,迭代公式可以实现非常有效的计算实现。利用远程监测平台(TEN-HMS)采集的血压信号进行实验和仿真,结果表明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信