Deep Text Retrieval Models based on DNN, CNN, RNN and Transformer: A review

Jianping Liu, Xintao Chu, Yingfei Wang, Meng Wang
{"title":"Deep Text Retrieval Models based on DNN, CNN, RNN and Transformer: A review","authors":"Jianping Liu, Xintao Chu, Yingfei Wang, Meng Wang","doi":"10.1109/ccis57298.2022.10016379","DOIUrl":null,"url":null,"abstract":"The development of deep learning technology provides a new development direction for text retrieval. Researchers have applied deep learning techniques to different information retrieval objects and carried out rich studies on them, such as web pages, scientific literature, and scientific data. This paper selects 40 research papers on related topics in the past 10 years through a step-by-step selection and conducts a review on the dimensions of model input, model structure, and its performance. Firstly, according to the differences in methods, we divided the deep learning text retrieval model into four categories: DNN-based, CNN-based, RNN-based, and Transformer-based, and analyzed the classical model structure and retrieval effect of each category. Secondly, we analyzed and compared the application scenarios of different types of models, and summarized some classic retrieval datasets. Finally, we discussed the main challenges and future research trends of deep text retrieval. This review is expected to provide basic knowledge and effective research entry points for scholars engaged in deep learning text retrieval.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of deep learning technology provides a new development direction for text retrieval. Researchers have applied deep learning techniques to different information retrieval objects and carried out rich studies on them, such as web pages, scientific literature, and scientific data. This paper selects 40 research papers on related topics in the past 10 years through a step-by-step selection and conducts a review on the dimensions of model input, model structure, and its performance. Firstly, according to the differences in methods, we divided the deep learning text retrieval model into four categories: DNN-based, CNN-based, RNN-based, and Transformer-based, and analyzed the classical model structure and retrieval effect of each category. Secondly, we analyzed and compared the application scenarios of different types of models, and summarized some classic retrieval datasets. Finally, we discussed the main challenges and future research trends of deep text retrieval. This review is expected to provide basic knowledge and effective research entry points for scholars engaged in deep learning text retrieval.
基于DNN、CNN、RNN和Transformer的深度文本检索模型综述
深度学习技术的发展为文本检索提供了新的发展方向。研究人员将深度学习技术应用于不同的信息检索对象,并对其进行了丰富的研究,如网页、科学文献、科学数据等。本文通过逐级筛选,选取近10年来40篇相关课题的研究论文,从模型输入、模型结构、模型性能三个维度进行综述。首先,根据方法的差异,将深度学习文本检索模型分为基于dnn、基于cnn、基于rnn和基于transformer的四类,并分析了每一类的经典模型结构和检索效果。其次,分析比较了不同类型模型的应用场景,总结了一些经典的检索数据集。最后,讨论了深度文本检索面临的主要挑战和未来的研究趋势。本文旨在为从事深度学习文本检索的学者提供基础知识和有效的研究切入点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信