{"title":"A bulk equivalent model of carbon-nanotube arrays : Application to the design of novel antennas","authors":"P. Franck, D. Baillargeat, B. Tay","doi":"10.1109/NEMO.2014.6995678","DOIUrl":null,"url":null,"abstract":"We report the efforts lead in the design and fabrication of novel antennas from carbon nanotubes (CNTs) to assess their practicality in diverse usage scenarios. CNT-based antennas could help improve the performance of electrically-small antennas and for instance be used for RF interconnect or to link nano to micro world. They also represent an interesting technology for millimeter-wave and THz applications. Significant progress has been made on each of the four intertwined axes pertaining to these special antennas, modeling, analysis, fabrication and characterization. This has allowed designing and fabricating the first electrically-short CNT antenna prototypes. Indeed, we have derived an original mesoscopic model for the electromagnetic properties of aligned arrays of nano-elements with a special focus on CNTs to match simulation and fabrication capabilities. In parallel, we have reproduced and developed CNT growth and deposition techniques and established scalable fabrication processes. Additionally, an analytical model for CNT-based monopole antennas has been derived from transmission line theory. By combining modeling, analysis, simulation and fabrication, we have finally achieved the design and fabrication of CNT-based monopole antenna prototypes.","PeriodicalId":273349,"journal":{"name":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO.2014.6995678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We report the efforts lead in the design and fabrication of novel antennas from carbon nanotubes (CNTs) to assess their practicality in diverse usage scenarios. CNT-based antennas could help improve the performance of electrically-small antennas and for instance be used for RF interconnect or to link nano to micro world. They also represent an interesting technology for millimeter-wave and THz applications. Significant progress has been made on each of the four intertwined axes pertaining to these special antennas, modeling, analysis, fabrication and characterization. This has allowed designing and fabricating the first electrically-short CNT antenna prototypes. Indeed, we have derived an original mesoscopic model for the electromagnetic properties of aligned arrays of nano-elements with a special focus on CNTs to match simulation and fabrication capabilities. In parallel, we have reproduced and developed CNT growth and deposition techniques and established scalable fabrication processes. Additionally, an analytical model for CNT-based monopole antennas has been derived from transmission line theory. By combining modeling, analysis, simulation and fabrication, we have finally achieved the design and fabrication of CNT-based monopole antenna prototypes.