{"title":"An integral equation based multiresolution modeling scheme for multimodal medical simulations","authors":"Jung Kim, S. De, M. Srinivasan","doi":"10.1109/HAPTIC.2003.1191282","DOIUrl":null,"url":null,"abstract":"Novel modeling paradigms are necessary to cope with the requirement of physically based real time simulation of laparoscopic surgical procedures using force feedback. The requirement of real time force feedback precludes the use of a very high high-resolution model over the entire domain. We propose a method to address this issue by introducing a multiresolution modeling technique, where a reasonably coarse global model is locally enhanced using mesh subdivision and smoothening. The global model is based on a discretization of the boundary integral representation of the problem. The use of precomputation and structural reanalysis techniques result in a very rapid computation procedure. The local refinements are provided in the vicinity of the tool-tissue interaction area by adaptive subdivision of the boundary element mesh. This technique results in interactive graphical as well as haptic rendering rates for reasonably complex models.","PeriodicalId":177962,"journal":{"name":"11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAPTIC.2003.1191282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Novel modeling paradigms are necessary to cope with the requirement of physically based real time simulation of laparoscopic surgical procedures using force feedback. The requirement of real time force feedback precludes the use of a very high high-resolution model over the entire domain. We propose a method to address this issue by introducing a multiresolution modeling technique, where a reasonably coarse global model is locally enhanced using mesh subdivision and smoothening. The global model is based on a discretization of the boundary integral representation of the problem. The use of precomputation and structural reanalysis techniques result in a very rapid computation procedure. The local refinements are provided in the vicinity of the tool-tissue interaction area by adaptive subdivision of the boundary element mesh. This technique results in interactive graphical as well as haptic rendering rates for reasonably complex models.