Non-binary split LDPC codes defined over finite groups

B. Shams, D. Declercq, V. Heinrich
{"title":"Non-binary split LDPC codes defined over finite groups","authors":"B. Shams, D. Declercq, V. Heinrich","doi":"10.1109/ISWCS.2009.5285264","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a practically implementable decoding algorithm for split LDPC codes with parity constraints defined over finite groups. The proposed decoding algorithm generalizes the orders of the variable and check nodes such that it may have messages of different order at the various nodes. This gives us a further degree of freedom in terms of better code construction. Using the binary image of the parity check matrix, we define the function node which maps lower order messages to higher order and vice-versa. In order to have a reduced compexity decoder which is practically implementable, we use the truncated messages concept at the check nodes and evaluate its performance. We show improved performance in the error floor region as compared to other non-split low complexity decoding algorithms.","PeriodicalId":344018,"journal":{"name":"2009 6th International Symposium on Wireless Communication Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 6th International Symposium on Wireless Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2009.5285264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a practically implementable decoding algorithm for split LDPC codes with parity constraints defined over finite groups. The proposed decoding algorithm generalizes the orders of the variable and check nodes such that it may have messages of different order at the various nodes. This gives us a further degree of freedom in terms of better code construction. Using the binary image of the parity check matrix, we define the function node which maps lower order messages to higher order and vice-versa. In order to have a reduced compexity decoder which is practically implementable, we use the truncated messages concept at the check nodes and evaluate its performance. We show improved performance in the error floor region as compared to other non-split low complexity decoding algorithms.
在有限群上定义的非二进制分割LDPC码
在本文中,我们提出了一种可实际实现的分割LDPC码的译码算法,该译码算法具有限定在有限群上的奇偶约束。所提出的译码算法对变量节点和检查节点的顺序进行了一般化,使得在不同节点上可以有不同顺序的消息。这在更好的代码构造方面给了我们更大的自由度。使用奇偶校验矩阵的二值图像,我们定义了将低阶消息映射到高阶消息的函数节点,反之亦然。为了使译码器的复杂度降低并具有实际的可实现性,我们在检查节点上使用了截断消息的概念,并对其性能进行了评价。与其他非分割低复杂度解码算法相比,我们在错误层区域显示了改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信