Remolding Semantic Focus with Dual Attention Mechanism for Aspect-based Sentiment Analysis

Xingda Li, Yanwei Bao, Min Hu, Fuji Ren
{"title":"Remolding Semantic Focus with Dual Attention Mechanism for Aspect-based Sentiment Analysis","authors":"Xingda Li, Yanwei Bao, Min Hu, Fuji Ren","doi":"10.1109/ccis57298.2022.10016391","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis (ABSA) is an NLP task that classify fine-grained sentiment towards one specific aspect from the same text. While attention mechanism has achieved great success, attaching aspects to abstract sentiment remains challenging. In this paper, we propose dual attention mechanism, a novel method to re-weight the distribution of attention between stack BERT layers, in prompt learning way with pretrained language model BERT. Specifically, after obtaining the most attractive words, the method raises weight of other possible corresponding words and makes model consider more comprehensively. To introduce more aspect information, we classify the sentiment in improved prompt learning way. Note that the overfitting using BERT on ABSA, we utilize the approach of staged loss that restrict the training not too small. Finally, the experiment results demonstrate the effectiveness and the stability of dual attention and provide a good insight of attention mechanism.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aspect-based sentiment analysis (ABSA) is an NLP task that classify fine-grained sentiment towards one specific aspect from the same text. While attention mechanism has achieved great success, attaching aspects to abstract sentiment remains challenging. In this paper, we propose dual attention mechanism, a novel method to re-weight the distribution of attention between stack BERT layers, in prompt learning way with pretrained language model BERT. Specifically, after obtaining the most attractive words, the method raises weight of other possible corresponding words and makes model consider more comprehensively. To introduce more aspect information, we classify the sentiment in improved prompt learning way. Note that the overfitting using BERT on ABSA, we utilize the approach of staged loss that restrict the training not too small. Finally, the experiment results demonstrate the effectiveness and the stability of dual attention and provide a good insight of attention mechanism.
基于双注意机制的面向面向方面情感分析的语义焦点重构
基于方面的情感分析(ABSA)是一种自然语言处理(NLP)任务,它对来自同一文本的特定方面的细粒度情感进行分类。虽然注意机制已经取得了巨大的成功,但将方面附加到抽象的情感上仍然是一个挑战。本文提出了一种新的双注意机制,利用预训练语言模型BERT,以快速学习的方式重新加权BERT层间的注意分布。具体而言,该方法在获得最吸引人的单词后,提高其他可能对应单词的权重,使模型考虑更加全面。为了引入更多的方面信息,我们采用改进的提示学习方式对情感进行分类。注意,在ABSA上使用BERT的过拟合,我们使用了阶段损失的方法,限制了训练不太小。最后,实验结果验证了双注意的有效性和稳定性,并对注意机制有了较好的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信