A Hitchhiker Guide to Empirical Macro Models

F. Canova, Filippo Ferroni
{"title":"A Hitchhiker Guide to Empirical Macro Models","authors":"F. Canova, Filippo Ferroni","doi":"10.21033/wp-2021-15","DOIUrl":null,"url":null,"abstract":"This paper describes a package which uses MATLAB functions and routines to estimate VARs, local projections and other models with classical or Bayesian methods. The toolbox allows a researcher to conduct inference under various prior assumptions on the parameters, to produce point and density forecasts, and to trace out the causal effect of shocks using a number of identification schemes. The toolbox is equipped to handle missing observations, mixed frequencies and time series with large cross-section information (e.g. panels of VAR and FAVAR). It also contains a number of routines to extract cyclical information and to date business cycles. We describe the methodology employed and implementation of the functions with a number of practical examples.","PeriodicalId":121231,"journal":{"name":"CEPR Discussion Paper Series","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEPR Discussion Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21033/wp-2021-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper describes a package which uses MATLAB functions and routines to estimate VARs, local projections and other models with classical or Bayesian methods. The toolbox allows a researcher to conduct inference under various prior assumptions on the parameters, to produce point and density forecasts, and to trace out the causal effect of shocks using a number of identification schemes. The toolbox is equipped to handle missing observations, mixed frequencies and time series with large cross-section information (e.g. panels of VAR and FAVAR). It also contains a number of routines to extract cyclical information and to date business cycles. We describe the methodology employed and implementation of the functions with a number of practical examples.
经验宏观模型的搭便车指南
本文介绍了一个使用MATLAB函数和例程来估计var、局部投影和其他模型的包,该包使用经典或贝叶斯方法。该工具箱允许研究人员在对参数的各种先前假设下进行推断,产生点和密度预测,并使用许多识别方案追踪冲击的因果效应。工具箱配备处理缺失的观测,混合频率和时间序列与大的横截面信息(例如面板VAR和FAVAR)。它还包含大量的例程来提取周期性信息和最新的商业周期。我们用一些实际的例子来描述所采用的方法和功能的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信