Forecasting SDN End-to-End Latency Using Graph Neural Network

Zhun Ge, Jiacheng Hou, A. Nayak
{"title":"Forecasting SDN End-to-End Latency Using Graph Neural Network","authors":"Zhun Ge, Jiacheng Hou, A. Nayak","doi":"10.1109/ICOIN56518.2023.10048915","DOIUrl":null,"url":null,"abstract":"Accurately predicting end-to-end delay is a challenging but essential problem in the networking field. By improving the delay estimation accuracy, we can distribute traffic more efficiently to enhance the networking performance future, such as satisfying packet latency requirements and improving user experience. This paper aims to predict an end-to-end delay in Software Defined Networking (SDN). We use a GNN-based model named Spatial-Temporal Graph Convolutional Network (STGCN). Benefiting the ability to capture spatial and temporal dependencies of traffic data, STGCN outperforms the baseline methodology and other three machine learning techniques, Multiple Linear Regression (MLR), Extreme Gradient Boosting (XGBOOST) and Random Forest (RF). Notably, our GNN-based methodology can achieve 97.0%, 95.9%, 96.1%, and 63.1% less root mean square error (RMSE) than the baseline predictor, MLR, XGBOOST and RF, respectively.","PeriodicalId":285763,"journal":{"name":"2023 International Conference on Information Networking (ICOIN)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN56518.2023.10048915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurately predicting end-to-end delay is a challenging but essential problem in the networking field. By improving the delay estimation accuracy, we can distribute traffic more efficiently to enhance the networking performance future, such as satisfying packet latency requirements and improving user experience. This paper aims to predict an end-to-end delay in Software Defined Networking (SDN). We use a GNN-based model named Spatial-Temporal Graph Convolutional Network (STGCN). Benefiting the ability to capture spatial and temporal dependencies of traffic data, STGCN outperforms the baseline methodology and other three machine learning techniques, Multiple Linear Regression (MLR), Extreme Gradient Boosting (XGBOOST) and Random Forest (RF). Notably, our GNN-based methodology can achieve 97.0%, 95.9%, 96.1%, and 63.1% less root mean square error (RMSE) than the baseline predictor, MLR, XGBOOST and RF, respectively.
基于图神经网络的SDN端到端延迟预测
准确预测端到端时延是网络领域中一个具有挑战性但又至关重要的问题。通过提高时延估计的准确性,我们可以更有效地分配流量,以提高未来的网络性能,如满足数据包延迟需求和改善用户体验。本文旨在预测软件定义网络(SDN)中的端到端延迟。我们使用了一个基于gnn的模型,称为时空图卷积网络(STGCN)。受益于捕获交通数据的空间和时间依赖性的能力,STGCN优于基线方法和其他三种机器学习技术,即多元线性回归(MLR),极端梯度增强(XGBOOST)和随机森林(RF)。值得注意的是,我们基于gnn的方法可以比基线预测器、MLR、XGBOOST和RF分别实现97.0%、95.9%、96.1%和63.1%的均方根误差(RMSE)降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信