{"title":"Efficient Methodology for ISO26262 Functional Safety Verification","authors":"F. A. D. Silva, A. Bagbaba, S. Hamdioui, C. Sauer","doi":"10.1109/IOLTS.2019.8854449","DOIUrl":null,"url":null,"abstract":"Tolerance to random hardware failures, required by ISO26262, entails accurate design behavior analysis, complex Verification Environments and expensive Fault Injection campaigns. This paper proposes a methodology combining the strengths of Automatic Test Pattern Generators (ATPG), Formal Methods and Fault Injection Simulation to decrease the efforts of Functional Safety Verification. Our methodology results in a fast-deployed Fault Injection environment achieving Fault detection rates higher than 99% on the tested designs. In addition, ISO26262 Tool Confidence level is improved by a fault analysis report that allows verification of malfunctions in the outputs of the tools.","PeriodicalId":383056,"journal":{"name":"2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2019.8854449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Tolerance to random hardware failures, required by ISO26262, entails accurate design behavior analysis, complex Verification Environments and expensive Fault Injection campaigns. This paper proposes a methodology combining the strengths of Automatic Test Pattern Generators (ATPG), Formal Methods and Fault Injection Simulation to decrease the efforts of Functional Safety Verification. Our methodology results in a fast-deployed Fault Injection environment achieving Fault detection rates higher than 99% on the tested designs. In addition, ISO26262 Tool Confidence level is improved by a fault analysis report that allows verification of malfunctions in the outputs of the tools.