Reinforcement Learning with a Supervisor for a Mobile Robot in a Real-world Environment

K. Welch, R. Peters
{"title":"Reinforcement Learning with a Supervisor for a Mobile Robot in a Real-world Environment","authors":"K. Welch, R. Peters","doi":"10.1109/CIRA.2007.382878","DOIUrl":null,"url":null,"abstract":"This paper describes two experiments with supervised reinforcement learning (RL) on a real, mobile robot. Two types of experiments were preformed. One tests the robot's reliability in implementing a navigation task it has been taught by a supervisor. The other, in which new obstacles are placed along the previously learned path to the goal, measures the robot's robustness to changes in environment. Supervision consisted of human-guided, remote-controlled runs through a navigation task during the initial stages of reinforcement learning. The RL algorithms deployed enabled the robot to learn a path to a goal yet retain the ability to explore different solutions when confronted with a new obstacle. Experimental analysis was based on measurements of average time to reach the goal, the number of failed states encountered during an episode, and how closely the RL learner matched the supervisor's actions.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper describes two experiments with supervised reinforcement learning (RL) on a real, mobile robot. Two types of experiments were preformed. One tests the robot's reliability in implementing a navigation task it has been taught by a supervisor. The other, in which new obstacles are placed along the previously learned path to the goal, measures the robot's robustness to changes in environment. Supervision consisted of human-guided, remote-controlled runs through a navigation task during the initial stages of reinforcement learning. The RL algorithms deployed enabled the robot to learn a path to a goal yet retain the ability to explore different solutions when confronted with a new obstacle. Experimental analysis was based on measurements of average time to reach the goal, the number of failed states encountered during an episode, and how closely the RL learner matched the supervisor's actions.
现实环境中移动机器人的监督强化学习
本文描述了在一个真实的移动机器人上进行监督强化学习(RL)的两个实验。进行了两类实验。其中一项是测试机器人在执行主管教导的导航任务时的可靠性。另一种方法是在之前学习过的到达目标的路径上放置新的障碍,测量机器人对环境变化的鲁棒性。在强化学习的初始阶段,监督包括人工引导,远程控制运行导航任务。部署的强化学习算法使机器人能够学习通往目标的路径,同时在遇到新障碍时保留探索不同解决方案的能力。实验分析是基于达到目标的平均时间的测量,在一个情节中遇到的失败状态的数量,以及RL学习者与主管行为的匹配程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信