AI Application in Next Generation Programmable Networks

Mateusz Rasmus, Z. Kopertowski, S. Kozdrowski
{"title":"AI Application in Next Generation Programmable Networks","authors":"Mateusz Rasmus, Z. Kopertowski, S. Kozdrowski","doi":"10.23919/softcom55329.2022.9911332","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) algorithms can provide an effective solution for dynamic and automated network resource management in Software Defined Networking (SDN). In this contribution, we propose an auto-configuration enabler inside the next-generation Internet of Things (IoT) architecture proposed in the ASSIST-IoT project, for network resource allocation. The AI algorithm is responsible for controlling intent-based routing in an SDN network. This paper focuses on the problem of optimal intent switching between two designated paths using a Deep-Q-Learning approach based on an artificial neural network. The AI algorithm was trained to maximise the total throughput in the network and to use the network efficiently. The presented results confirm the validity of the applied AI approach to the problem of improving network performance in next-generation networks for economically and technically efficient implementation in the evaluation of IoT network systems.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial intelligence (AI) algorithms can provide an effective solution for dynamic and automated network resource management in Software Defined Networking (SDN). In this contribution, we propose an auto-configuration enabler inside the next-generation Internet of Things (IoT) architecture proposed in the ASSIST-IoT project, for network resource allocation. The AI algorithm is responsible for controlling intent-based routing in an SDN network. This paper focuses on the problem of optimal intent switching between two designated paths using a Deep-Q-Learning approach based on an artificial neural network. The AI algorithm was trained to maximise the total throughput in the network and to use the network efficiently. The presented results confirm the validity of the applied AI approach to the problem of improving network performance in next-generation networks for economically and technically efficient implementation in the evaluation of IoT network systems.
人工智能在下一代可编程网络中的应用
人工智能(AI)算法可以为软件定义网络(SDN)中动态、自动化的网络资源管理提供有效的解决方案。在本文中,我们在ASSIST-IoT项目中提出的下一代物联网(IoT)架构中提出了一个自动配置启用器,用于网络资源分配。在SDN网络中,AI算法负责控制基于意图的路由。本文主要研究了基于人工神经网络的深度q -学习方法在两条指定路径之间的最优意图切换问题。人工智能算法被训练成最大限度地提高网络的总吞吐量,并有效地利用网络。提出的结果证实了应用人工智能方法在改善下一代网络中的网络性能问题上的有效性,以便在物联网网络系统的评估中实现经济和技术上的高效实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信