A Fingerprint Verification Algorithm Using the Smallest Minimum Sum of Closest Euclidean Distance

U. K. Bhowmik, A. Ashrafi, R. Adhami
{"title":"A Fingerprint Verification Algorithm Using the Smallest Minimum Sum of Closest Euclidean Distance","authors":"U. K. Bhowmik, A. Ashrafi, R. Adhami","doi":"10.1109/CONIELECOMP.2009.57","DOIUrl":null,"url":null,"abstract":"In this paper, a Euclidean distance based minutia matching algorithm is proposed to improve the matching accuracy in fingerprint verification system. This algorithm extracts matched minutia pairs from input and template fingerprints by using the smallest minimum sum of closest Euclidean distance (SMSCED), corresponding rotation angle and empirically chosen statistical threshold values. Instead of using the minutia type and orientation angle, which are widely employed in existing algorithms, the proposed algorithm uses only the minutia location, to reduce the effect of non-linear distortion. Experimental results show that the proposed method has higher accuracy with improved verification rate and rejection rate.","PeriodicalId":292855,"journal":{"name":"2009 International Conference on Electrical, Communications, and Computers","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Electrical, Communications, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2009.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, a Euclidean distance based minutia matching algorithm is proposed to improve the matching accuracy in fingerprint verification system. This algorithm extracts matched minutia pairs from input and template fingerprints by using the smallest minimum sum of closest Euclidean distance (SMSCED), corresponding rotation angle and empirically chosen statistical threshold values. Instead of using the minutia type and orientation angle, which are widely employed in existing algorithms, the proposed algorithm uses only the minutia location, to reduce the effect of non-linear distortion. Experimental results show that the proposed method has higher accuracy with improved verification rate and rejection rate.
一种基于欧几里得距离最小最小和的指纹验证算法
为了提高指纹验证系统的匹配精度,提出了一种基于欧氏距离的特征匹配算法。该算法利用最接近欧几里德距离(SMSCED)、对应的旋转角度和经验选择的统计阈值的最小和,从输入指纹和模板指纹中提取匹配的特征对。该算法不使用现有算法中广泛使用的细节类型和方向角,而只使用细节位置,以减少非线性失真的影响。实验结果表明,该方法在提高验证率和拒绝率的同时,具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信