Joint Channel Estimation and Signal Detection using Latent Space Representations in VAE

W. IanWongC., M. Jaward, Vishnu Monn Baskaran, Chong Hin Chee, M. L. Sim
{"title":"Joint Channel Estimation and Signal Detection using Latent Space Representations in VAE","authors":"W. IanWongC., M. Jaward, Vishnu Monn Baskaran, Chong Hin Chee, M. L. Sim","doi":"10.1109/ISPACS57703.2022.10082835","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven unsupervised Deep Learning-based joint channel estimation and signal detection method for a narrowband wireless communication system. Our proposed Deep Learning-based architecture uses a Variational Autoencoder (VAE) that can combat the effects of additive white Gaussian noise and Rayleigh fading by encoding the input into a lower dimensional representation as the latent space outputs. The lower dimensional representation is used to extract the symbol information and is classified to the corresponding symbols of the transmitted signal using a classifier. We propose two approaches for the VAE-based architecture by using a parallel 1-D VAE and a joint 2-D VAE that takes different signal representations. From our simulation results, the proposed VAE-based architectures can achieve BER performance improvements over a deep Convolutional Neural Network approach and corre-lator detector.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a data-driven unsupervised Deep Learning-based joint channel estimation and signal detection method for a narrowband wireless communication system. Our proposed Deep Learning-based architecture uses a Variational Autoencoder (VAE) that can combat the effects of additive white Gaussian noise and Rayleigh fading by encoding the input into a lower dimensional representation as the latent space outputs. The lower dimensional representation is used to extract the symbol information and is classified to the corresponding symbols of the transmitted signal using a classifier. We propose two approaches for the VAE-based architecture by using a parallel 1-D VAE and a joint 2-D VAE that takes different signal representations. From our simulation results, the proposed VAE-based architectures can achieve BER performance improvements over a deep Convolutional Neural Network approach and corre-lator detector.
基于潜空间表示的联合信道估计和信号检测
提出了一种基于数据驱动的无监督深度学习的窄带无线通信系统信道估计和信号检测联合方法。我们提出的基于深度学习的架构使用变分自编码器(VAE),通过将输入编码为较低维表示作为潜在空间输出,可以对抗加性高斯白噪声和瑞利衰落的影响。低维表示用于提取符号信息,并使用分类器将其分类为传输信号的相应符号。我们为基于VAE的体系结构提出了两种方法,即使用采用不同信号表示的并行一维VAE和联合二维VAE。从我们的仿真结果来看,所提出的基于vae的架构可以实现比深度卷积神经网络方法和相关检测器更好的误码率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信