Implementasi Algoritma FG-Growth untuk Sistem Rekomendasi Penjualan Produk

Siti Yuliyanti
{"title":"Implementasi Algoritma FG-Growth untuk Sistem Rekomendasi Penjualan Produk","authors":"Siti Yuliyanti","doi":"10.26874/jumanji.v5i1.85","DOIUrl":null,"url":null,"abstract":"The variety of stationery marketed, makes business competition increasingly fierce in order to provide the best service to customers. Abundant sales transaction data, triggering piles of data so that it requires data mining processing techniques, namely association rule mining using the FP-Growth algorithm. Algorithm that generates frequent itemset used in the process of determining the rules that can produce an option by taking a product sales transaction data object. The test results show a rule that has the best confidence value and lift ratio of 100%, as well as 80% support with the rules that every purchase of a ballpoint product can be sure to buy a notebook from the dataset used as a sample data in the system trial (50 names). goods and 7 transaction data) with minimum support (5% = 0.05) and minimum confidence (30% = 0.3).","PeriodicalId":352594,"journal":{"name":"JUMANJI (Jurnal Masyarakat Informatika Unjani)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JUMANJI (Jurnal Masyarakat Informatika Unjani)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26874/jumanji.v5i1.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The variety of stationery marketed, makes business competition increasingly fierce in order to provide the best service to customers. Abundant sales transaction data, triggering piles of data so that it requires data mining processing techniques, namely association rule mining using the FP-Growth algorithm. Algorithm that generates frequent itemset used in the process of determining the rules that can produce an option by taking a product sales transaction data object. The test results show a rule that has the best confidence value and lift ratio of 100%, as well as 80% support with the rules that every purchase of a ballpoint product can be sure to buy a notebook from the dataset used as a sample data in the system trial (50 names). goods and 7 transaction data) with minimum support (5% = 0.05) and minimum confidence (30% = 0.3).
产品销售推荐书系统FG-Growth算法的实现
市场上文具的品种繁多,使企业竞争日益激烈,以便为客户提供最好的服务。丰富的销售交易数据,触发了成堆的数据,因此需要数据挖掘处理技术,即使用FP-Growth算法的关联规则挖掘。生成频繁项集的算法,用于确定规则的过程,该规则可以通过获取产品销售事务数据对象来产生选项。测试结果显示,该规则具有最佳置信度值和提升比为100%,并且每次购买圆珠笔产品都可以确保从系统试用中用作样本数据的数据集(50个名称)中购买笔记本的规则支持度为80%。商品和7个交易数据),支持度最低(5% = 0.05),置信度最低(30% = 0.3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信