Parallelization of BLAST with MapReduce for Long Sequence Alignment

Xiaoliang Yang, Yulong Liu, C. Yuan, Yihua Huang
{"title":"Parallelization of BLAST with MapReduce for Long Sequence Alignment","authors":"Xiaoliang Yang, Yulong Liu, C. Yuan, Yihua Huang","doi":"10.1109/PAAP.2011.36","DOIUrl":null,"url":null,"abstract":"Sequence alignment is of great importance in biology research. BLAST is a sequence alignment tool used extensively by researchers. However the continuously increasing amount of sequence data to be processed presents many challenges to it. This paper gives a simple and effective approach to parallelizing BLAST using the MapReduce technique. The MapReduce-BLAST shows very good performance and scales nearly linearly to the database size and query length. This results from both the power of MapReduce and the inherent parallel characteristics of the BLAST algorithm. Sequence alignment algorithms based on techniques similar with BLAST's seed-and-extend approach are very suitable for being parallelized with MapReduce.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Sequence alignment is of great importance in biology research. BLAST is a sequence alignment tool used extensively by researchers. However the continuously increasing amount of sequence data to be processed presents many challenges to it. This paper gives a simple and effective approach to parallelizing BLAST using the MapReduce technique. The MapReduce-BLAST shows very good performance and scales nearly linearly to the database size and query length. This results from both the power of MapReduce and the inherent parallel characteristics of the BLAST algorithm. Sequence alignment algorithms based on techniques similar with BLAST's seed-and-extend approach are very suitable for being parallelized with MapReduce.
基于MapReduce的BLAST长序列对齐并行化
序列比对在生物学研究中具有重要意义。BLAST是研究人员广泛使用的序列比对工具。然而,随着序列数据量的不断增加,对序列数据处理提出了许多挑战。本文给出了一种利用MapReduce技术实现BLAST并行化的简单有效的方法。MapReduce-BLAST显示了非常好的性能,并且几乎与数据库大小和查询长度成线性关系。这源于MapReduce的强大功能和BLAST算法固有的并行特性。基于与BLAST的种子扩展方法相似的技术的序列对齐算法非常适合与MapReduce并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信