EV charging scheduling for cost and greenhouse gases emissions minimization

Rentao Wu, G. Tsagarakis, A. Collin, A. Kiprakis
{"title":"EV charging scheduling for cost and greenhouse gases emissions minimization","authors":"Rentao Wu, G. Tsagarakis, A. Collin, A. Kiprakis","doi":"10.1109/EVER.2017.7935877","DOIUrl":null,"url":null,"abstract":"This paper investigates the potential impact of a fleet of electric vehicles charging on the cost of electricity generation, greenhouse gas emissions (GHG) and power system demand through low voltage residential demand-side management (DSM). The proposed optimisation algorithm is used to shift electric vehicles charging loads to minimize the combined impact of three key parameters: financial, environmental, and demand variability. The results show that it is effective to reshape the power demand and reduce electricity cost and GHG emissions without affecting people's driving patterns.","PeriodicalId":395329,"journal":{"name":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2017.7935877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the potential impact of a fleet of electric vehicles charging on the cost of electricity generation, greenhouse gas emissions (GHG) and power system demand through low voltage residential demand-side management (DSM). The proposed optimisation algorithm is used to shift electric vehicles charging loads to minimize the combined impact of three key parameters: financial, environmental, and demand variability. The results show that it is effective to reshape the power demand and reduce electricity cost and GHG emissions without affecting people's driving patterns.
电动汽车充电计划的成本和温室气体排放最小化
本文通过低压住宅需求侧管理(DSM)研究了电动汽车充电对发电成本、温室气体排放(GHG)和电力系统需求的潜在影响。所提出的优化算法用于改变电动汽车充电负荷,以最大限度地减少三个关键参数的综合影响:金融、环境和需求可变性。结果表明,在不影响人们驾驶模式的情况下,重塑电力需求,降低电力成本和温室气体排放是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信