Genetic algorithms - synthesis of finite state machines

Andrey Popov, Krasimira W. Filipova
{"title":"Genetic algorithms - synthesis of finite state machines","authors":"Andrey Popov, Krasimira W. Filipova","doi":"10.1109/ISSE.2004.1490840","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GAs) are a stochastic, non-derivative optimization method. They use populations of acceptable solutions (genes) of the given problem, which evolve toward optimum. The paper introduces GAs as a method for the synthesis of the activation function of flip-flops in finite state machines. The genes in standard GAs are Boolean vectors. When JK and RS flip-flops are used in the synthesis of finite state machines, there are undefined variables in the activation signals. When the finite state machine is of high order, the Quine-McClusky method is used, which requires exact values of the variables. At this stage, the GAs are used to find the optimal set of variables, in terms of simplifying the description.","PeriodicalId":342004,"journal":{"name":"27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2004.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE.2004.1490840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Genetic algorithms (GAs) are a stochastic, non-derivative optimization method. They use populations of acceptable solutions (genes) of the given problem, which evolve toward optimum. The paper introduces GAs as a method for the synthesis of the activation function of flip-flops in finite state machines. The genes in standard GAs are Boolean vectors. When JK and RS flip-flops are used in the synthesis of finite state machines, there are undefined variables in the activation signals. When the finite state machine is of high order, the Quine-McClusky method is used, which requires exact values of the variables. At this stage, the GAs are used to find the optimal set of variables, in terms of simplifying the description.
遗传算法-有限状态机的综合
遗传算法是一种随机的、无导数的优化方法。它们使用给定问题的可接受解决方案(基因)群体,这些解决方案向最优方向进化。本文介绍了一种合成有限状态机触发器激活函数的GAs方法。标准GAs中的基因是布尔向量。在有限状态机综合中使用JK触发器和RS触发器时,激活信号中存在未定义变量。当有限状态机是高阶时,使用Quine-McClusky方法,该方法要求变量的精确值。在这个阶段,GAs用于找到最优的变量集,以简化描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信