Modulo 2n+1 addition and multiplication for redundant operands

Kostas Tsoumanis, C. Efstathiou, K. Pekmestzi
{"title":"Modulo 2n+1 addition and multiplication for redundant operands","authors":"Kostas Tsoumanis, C. Efstathiou, K. Pekmestzi","doi":"10.1109/IDT.2014.7038614","DOIUrl":null,"url":null,"abstract":"Complex arithmetic operations are widely used in Digital Signal Processing (DSP) applications. Keeping the intermediate results in a redundant representation (e.g. carry-save) is a common technique to speed up chained arithmetic operations due to the elimination of the intermediate parallel additions which occupy significant area and largely increase the overall critical delay. Thus, arithmetic units with operands in a redundant representation are of considerable practical interest. In this work, we propose an efficient modulo 2n+1 addition unit with one or both operands in the redundant carry-save representation and, also, we introduce an efficient modulo 2n+1 multiplier with the one of two operands in the redundant carry-save form.","PeriodicalId":122246,"journal":{"name":"2014 9th International Design and Test Symposium (IDT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Design and Test Symposium (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2014.7038614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Complex arithmetic operations are widely used in Digital Signal Processing (DSP) applications. Keeping the intermediate results in a redundant representation (e.g. carry-save) is a common technique to speed up chained arithmetic operations due to the elimination of the intermediate parallel additions which occupy significant area and largely increase the overall critical delay. Thus, arithmetic units with operands in a redundant representation are of considerable practical interest. In this work, we propose an efficient modulo 2n+1 addition unit with one or both operands in the redundant carry-save representation and, also, we introduce an efficient modulo 2n+1 multiplier with the one of two operands in the redundant carry-save form.
模2n+1的加法和乘法冗余操作数
复杂的算术运算在数字信号处理(DSP)中有着广泛的应用。将中间结果保持在冗余表示中(例如,进位保存)是一种常见的加速链式算术运算的技术,因为它消除了中间并行加法,这些加法占用了大量的面积,大大增加了总体临界延迟。因此,具有冗余表示的操作数的算术单元具有相当大的实际意义。在这项工作中,我们提出了一个有效的模2n+1加法单元,其中一个或两个操作数都是冗余的进位保存形式,并且我们还引入了一个有效的模2n+1乘法器,其中一个操作数是冗余的进位保存形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信