ProximiTEE

Aritra Dhar, Ivan Puddu, K. Kostiainen, Srdjan Capkun
{"title":"ProximiTEE","authors":"Aritra Dhar, Ivan Puddu, K. Kostiainen, Srdjan Capkun","doi":"10.1145/3374664.3375726","DOIUrl":null,"url":null,"abstract":"Intel SGX enables protected enclaves on untrusted computing platforms. An important part of SGX is its remote attestation mechanism that allows a remote verifier to check that the expected enclave was correctly initialized before provisioning secrets to it. However, SGX attestation is vulnerable to relay attacks where the attacker, using malicious software on the target platform, redirects the attestation and therefore the provisioning of confidential data to a platform that he physically controls. Although relay attacks have been known for a long time, their consequences have not been carefully examined. In this paper, we analyze relay attacks and show that redirection increases the adversary's abilities to compromise the enclave in several ways, enabling for instance physical and digital side-channel attacks that would not be otherwise possible. We propose ProximiTEE, a novel solution to prevent relay attacks. Our solution is based on a trusted embedded device that is attached to the target platform. Our device verifies the proximity of the attested enclave, thus allowing attestation to the intended enclave regardless of malicious software, such as a compromised OS, on the target platform. The device also performs periodic proximity verification which enables secure enclave revocation by detaching the device. Although proximity verification has been proposed as a defense against relay attacks before, this paper is the first to experimentally demonstrate that it can be secure and reliable for TEEs like SGX. Additionally, we consider a stronger adversary that has obtained leaked SGX attestation keys and emulates an enclave on the target platform. To address such emulation attacks, we propose a second solution where the target platform is securely initialized by booting it from the attached embedded device.","PeriodicalId":171521,"journal":{"name":"Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3374664.3375726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Intel SGX enables protected enclaves on untrusted computing platforms. An important part of SGX is its remote attestation mechanism that allows a remote verifier to check that the expected enclave was correctly initialized before provisioning secrets to it. However, SGX attestation is vulnerable to relay attacks where the attacker, using malicious software on the target platform, redirects the attestation and therefore the provisioning of confidential data to a platform that he physically controls. Although relay attacks have been known for a long time, their consequences have not been carefully examined. In this paper, we analyze relay attacks and show that redirection increases the adversary's abilities to compromise the enclave in several ways, enabling for instance physical and digital side-channel attacks that would not be otherwise possible. We propose ProximiTEE, a novel solution to prevent relay attacks. Our solution is based on a trusted embedded device that is attached to the target platform. Our device verifies the proximity of the attested enclave, thus allowing attestation to the intended enclave regardless of malicious software, such as a compromised OS, on the target platform. The device also performs periodic proximity verification which enables secure enclave revocation by detaching the device. Although proximity verification has been proposed as a defense against relay attacks before, this paper is the first to experimentally demonstrate that it can be secure and reliable for TEEs like SGX. Additionally, we consider a stronger adversary that has obtained leaked SGX attestation keys and emulates an enclave on the target platform. To address such emulation attacks, we propose a second solution where the target platform is securely initialized by booting it from the attached embedded device.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信