Localization of moving microphone arrays from moving sound sources for robot audition

C. Evers, Alastair H. Moore, P. Naylor
{"title":"Localization of moving microphone arrays from moving sound sources for robot audition","authors":"C. Evers, Alastair H. Moore, P. Naylor","doi":"10.1109/EUSIPCO.2016.7760400","DOIUrl":null,"url":null,"abstract":"Acoustic Simultaneous Localization and Mapping (a-SLAM) jointly localizes the trajectory of a microphone array installed on a moving platform, whilst estimating the acoustic map of surrounding sound sources, such as human speakers. Whilst traditional approaches for SLAM in the vision and optical research literature rely on the assumption that the surrounding map features are static, in the acoustic case the positions of talkers are usually time-varying due to head rotations and body movements. This paper demonstrates that tracking of moving sources can be incorporated in a-SLAM by modelling the acoustic map as a Random Finite Set (RFS) of multiple sources and explicitly imposing models of the source dynamics. The proposed approach is verified and its performance evaluated for realistic simulated data.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Acoustic Simultaneous Localization and Mapping (a-SLAM) jointly localizes the trajectory of a microphone array installed on a moving platform, whilst estimating the acoustic map of surrounding sound sources, such as human speakers. Whilst traditional approaches for SLAM in the vision and optical research literature rely on the assumption that the surrounding map features are static, in the acoustic case the positions of talkers are usually time-varying due to head rotations and body movements. This paper demonstrates that tracking of moving sources can be incorporated in a-SLAM by modelling the acoustic map as a Random Finite Set (RFS) of multiple sources and explicitly imposing models of the source dynamics. The proposed approach is verified and its performance evaluated for realistic simulated data.
机器人试听用移动声源定位移动麦克风阵列
声学同步定位和测绘(a- slam)联合定位安装在移动平台上的麦克风阵列的轨迹,同时估计周围声源(如人类说话者)的声学地图。虽然传统的SLAM方法在视觉和光学研究文献中依赖于周围地图特征是静态的假设,但在声学情况下,由于头部旋转和身体运动,说话者的位置通常是时变的。本文证明,通过将声学图建模为多个声源的随机有限集(RFS)并明确施加声源动力学模型,可以将运动声源的跟踪纳入a- slam中。仿真数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信