Image denoising using Contourlet and two-dimensional Principle Component Analysis

Zhe Liu, Huanan Xu
{"title":"Image denoising using Contourlet and two-dimensional Principle Component Analysis","authors":"Zhe Liu, Huanan Xu","doi":"10.1109/IASP.2010.5476106","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel image denoising algorithm using the Contourlet transform and the two-dimensional Principle Component Analysis (2DPCA). The noise image can be decomposed by the Contourlet into directional subbands. The 2DPCA is then carried out to estimate the threshold for the image blocks in high frequency subbands. The soft thresholding shrinkage can hence be employed on the Contourlet coefficients without estimating the noise variance. The denoising algorithm is validated by numerical experiments on two images. Numerical results show that the proposed method can obtain higher PSNR than former methods.","PeriodicalId":223866,"journal":{"name":"2010 International Conference on Image Analysis and Signal Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2010.5476106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a novel image denoising algorithm using the Contourlet transform and the two-dimensional Principle Component Analysis (2DPCA). The noise image can be decomposed by the Contourlet into directional subbands. The 2DPCA is then carried out to estimate the threshold for the image blocks in high frequency subbands. The soft thresholding shrinkage can hence be employed on the Contourlet coefficients without estimating the noise variance. The denoising algorithm is validated by numerical experiments on two images. Numerical results show that the proposed method can obtain higher PSNR than former methods.
基于Contourlet和二维主成分分析的图像去噪
提出了一种基于Contourlet变换和二维主成分分析(2DPCA)的图像去噪算法。利用Contourlet将噪声图像分解为多个方向子带。然后进行2DPCA来估计高频子带图像块的阈值。因此,可以在不估计噪声方差的情况下对Contourlet系数采用软阈值收缩。通过两幅图像的数值实验验证了该算法的有效性。数值结果表明,该方法能获得比以往方法更高的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信