{"title":"How Bulky of Base Adducts can be Responsible for Clastogenicity rather than Mutagenicity?","authors":"Y. Sasaki","doi":"10.23880/act-16000256","DOIUrl":null,"url":null,"abstract":"Two types of TK mutants are induced by genotoxic factors; normally growing (NG) TK mutants due to point mutations of targeted TK locus, and slowly growing (SG) mutants due to gross structural changes involving the growth-regulating gene outside targeted TK locus. In this study, human lymphoblstoid WTK1 cells were used to consider how bulky n- alkylated bases can induce SG mutants. For this purpose, n-alkyl methanesulfonates (AMS) having an n-alkyl group with 3-7 carbons [n-propy methanesulfonate (PMS), n-butyl methanesulfonate (BMS), n-pentyl methanesulfonate (PeMS), n- hexyl methanesulfonate (HexMS), and heptyl methanesulfonate(HepMS)] were synthesized. n-alkyl methanesulfonates having n-alkyl groups with 1-7 carbons induced NG mutants, but n-alkyl methanesulfonates having n-alkyl groups with ≥4 carbons but not with ≤3 carbons induced SG mutants. n-Alkyl methanesulfonates having n-Alkyl groups with ≥4 carbons have been shown to induce bulky adducts that cause disturbances to the helical DNA structure and are removed by nucleotide excision repair. It could be considered that n-alkyl groups with ≥4 carbons causing disturbances to the helical DNA structure induce SG mutants to result in clastogenicity rather than mutagenicity.","PeriodicalId":134434,"journal":{"name":"Advances in Clinical Toxicology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Clinical Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/act-16000256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Two types of TK mutants are induced by genotoxic factors; normally growing (NG) TK mutants due to point mutations of targeted TK locus, and slowly growing (SG) mutants due to gross structural changes involving the growth-regulating gene outside targeted TK locus. In this study, human lymphoblstoid WTK1 cells were used to consider how bulky n- alkylated bases can induce SG mutants. For this purpose, n-alkyl methanesulfonates (AMS) having an n-alkyl group with 3-7 carbons [n-propy methanesulfonate (PMS), n-butyl methanesulfonate (BMS), n-pentyl methanesulfonate (PeMS), n- hexyl methanesulfonate (HexMS), and heptyl methanesulfonate(HepMS)] were synthesized. n-alkyl methanesulfonates having n-alkyl groups with 1-7 carbons induced NG mutants, but n-alkyl methanesulfonates having n-alkyl groups with ≥4 carbons but not with ≤3 carbons induced SG mutants. n-Alkyl methanesulfonates having n-Alkyl groups with ≥4 carbons have been shown to induce bulky adducts that cause disturbances to the helical DNA structure and are removed by nucleotide excision repair. It could be considered that n-alkyl groups with ≥4 carbons causing disturbances to the helical DNA structure induce SG mutants to result in clastogenicity rather than mutagenicity.