Residual stress control during the growth and release process in gold suspended microstructures

Akshdeep Sharma, D. Bansal, Amit Kumar, D. Kumar, K. Rangra
{"title":"Residual stress control during the growth and release process in gold suspended microstructures","authors":"Akshdeep Sharma, D. Bansal, Amit Kumar, D. Kumar, K. Rangra","doi":"10.1117/12.2041433","DOIUrl":null,"url":null,"abstract":"This paper presents the growth and release process effects on the deformation of suspended gold micro-structures. Cantilever type test structures, typically used for RF MEMS devices have been examined. The structures have a thickness of 2μm, produced by patterned gold electro deposition above a sacrificial photoresist layer, then removed by dry release in oxygen plasma ashing and wet release using critical point dryer (CPD). The growth process of gold electroplating is optimized for low residual stress using pulse power supply. Minimum stress 35-60 MPa is obtained at grain size 30-45nm and RMS roughness of the order of 5-8nm. The growth mechanism of structural layer and releasing methods are optimized to obtain planar MEMS structures. The main parameters considered are the initial stress during the growth of electroplated gold and the release process recipes developed for fabrication of metallic structural layer.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2041433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the growth and release process effects on the deformation of suspended gold micro-structures. Cantilever type test structures, typically used for RF MEMS devices have been examined. The structures have a thickness of 2μm, produced by patterned gold electro deposition above a sacrificial photoresist layer, then removed by dry release in oxygen plasma ashing and wet release using critical point dryer (CPD). The growth process of gold electroplating is optimized for low residual stress using pulse power supply. Minimum stress 35-60 MPa is obtained at grain size 30-45nm and RMS roughness of the order of 5-8nm. The growth mechanism of structural layer and releasing methods are optimized to obtain planar MEMS structures. The main parameters considered are the initial stress during the growth of electroplated gold and the release process recipes developed for fabrication of metallic structural layer.
金悬浮微结构生长与释放过程中残余应力的控制
研究了生长和释放过程对悬浮金微结构变形的影响。悬臂式测试结构,通常用于射频MEMS器件进行了检查。该结构的厚度为2μm,在牺牲光刻胶层上电沉积图案金,然后通过氧等离子灰化干燥释放和临界点干燥器湿释放去除。采用脉冲电源对电镀金的生长工艺进行了优化,以达到低残余应力的目的。当晶粒尺寸为30 ~ 45nm, RMS粗糙度为5 ~ 8nm时,最小应力为35 ~ 60 MPa。优化了结构层的生长机理和释放方法,得到了平面MEMS结构。主要考虑了电镀金生长过程中的初始应力和制备金属结构层的释放工艺配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信