Klasifikasi Teks menggunakan Genetic Programming dengan Implementasi Web Scraping dan Map Reduce

W. Wedashwara, A. Hidayat, Budi Irmawati, Ariyan Zubaidi
{"title":"Klasifikasi Teks menggunakan Genetic Programming dengan Implementasi Web Scraping dan Map Reduce","authors":"W. Wedashwara, A. Hidayat, Budi Irmawati, Ariyan Zubaidi","doi":"10.29408/edumatic.v6i1.5274","DOIUrl":null,"url":null,"abstract":"Classification of text documents on online media is a big data problem and requires automation. Research has developed a text classification system with pre-processing using map-reduce and web scraping data collection. This study aims to evaluate text classification performance by combining genetic programming algorithms, map-reduce and web scraping for processing large data in the form of text. Data collection was carried out by observing web-based scraping. Data was collected by reducing 8126 duplicates. Map-reduce has tokenized and stopped-word removal with 28507 terms with 4306 unique terms and 24201 duplication terms. Text classification evaluation shows that a single tree produces better accuracy (0.7072) than a decision tree (0.6874), and the lowest is a multi-tree (0.6726). For the acquisition of genetic programming support values with the multi-tree, the highest average support is 0.3854, followed by the decision tree with 0.3584 and the smallest single tree with 0.3494. In general, the amount of support is not in line with the accuracy value achieved.","PeriodicalId":314771,"journal":{"name":"Edumatic: Jurnal Pendidikan Informatika","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edumatic: Jurnal Pendidikan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/edumatic.v6i1.5274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification of text documents on online media is a big data problem and requires automation. Research has developed a text classification system with pre-processing using map-reduce and web scraping data collection. This study aims to evaluate text classification performance by combining genetic programming algorithms, map-reduce and web scraping for processing large data in the form of text. Data collection was carried out by observing web-based scraping. Data was collected by reducing 8126 duplicates. Map-reduce has tokenized and stopped-word removal with 28507 terms with 4306 unique terms and 24201 duplication terms. Text classification evaluation shows that a single tree produces better accuracy (0.7072) than a decision tree (0.6874), and the lowest is a multi-tree (0.6726). For the acquisition of genetic programming support values with the multi-tree, the highest average support is 0.3854, followed by the decision tree with 0.3584 and the smallest single tree with 0.3494. In general, the amount of support is not in line with the accuracy value achieved.
在线媒体上的文本文档分类是一个大数据问题,需要自动化。研究开发了一种利用地图约简和网页抓取数据进行预处理的文本分类系统。本研究旨在通过结合遗传规划算法、map-reduce算法和web抓取算法对文本形式的大数据进行处理,评估文本分类性能。数据收集是通过观察基于web的抓取进行的。通过减少8126个重复来收集数据。Map-reduce对28507个词进行了标记化和停词删除,其中包含4306个唯一词和24201个重复词。文本分类评估表明,单树比决策树产生更好的准确率(0.7072)(0.6874),最低的是多树(0.6726)。对于多树获取遗传规划支持值,平均支持度最高为0.3854,其次是决策树,平均支持度为0.3584,单树最小,平均支持度为0.3494。一般情况下,支撑量不符合所达到的精度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信