De Moivre’s Theorem for the Matrix Representation of Dual Generalized Quaternions

Xiangqiang Kong
{"title":"De Moivre’s Theorem for the Matrix Representation of Dual Generalized Quaternions","authors":"Xiangqiang Kong","doi":"10.26689/erd.v4i1.4140","DOIUrl":null,"url":null,"abstract":"In this paper, based on the concept of dual generalized quaternions, the study of dual generalized quaternions is transformed into a study of the matrix representation of dual generalized quaternions. With the aid of a polar representation for dual generalized quaternions, De Moivre’s theorem is obtained for the matrix representation of dual generalized quaternions, and Euler’s formula is extended. The relations between the powers of matrices associated with dual generalized quaternions are determined, and the n-th root of the matrix representation equation of dual generalized quaternions is found.","PeriodicalId":288252,"journal":{"name":"Education Reform and Development","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education Reform and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26689/erd.v4i1.4140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, based on the concept of dual generalized quaternions, the study of dual generalized quaternions is transformed into a study of the matrix representation of dual generalized quaternions. With the aid of a polar representation for dual generalized quaternions, De Moivre’s theorem is obtained for the matrix representation of dual generalized quaternions, and Euler’s formula is extended. The relations between the powers of matrices associated with dual generalized quaternions are determined, and the n-th root of the matrix representation equation of dual generalized quaternions is found.
对偶广义四元数矩阵表示的De Moivre定理
本文从对偶广义四元数的概念出发,将对偶广义四元数的研究转化为对偶广义四元数的矩阵表示的研究。借助于对偶广义四元数的极表示,得到了对偶广义四元数矩阵表示的De Moivre定理,并对欧拉公式进行了推广。确定了与对偶广义四元数相关的矩阵幂之间的关系,得到了对偶广义四元数的矩阵表示方程的n次根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信