Toward Detecting Conspiracy Language in Misinformation Documents

Alana Platt, Jonathan Brown, Amanda Venske
{"title":"Toward Detecting Conspiracy Language in Misinformation Documents","authors":"Alana Platt, Jonathan Brown, Amanda Venske","doi":"10.1145/3510606.3551895","DOIUrl":null,"url":null,"abstract":"Recent events have illustrated the danger of online conspiracy theories to cause harm in the real world. In this research in progress, we focus on machine learning techniques to differentiate conspiracy information from other forms of misinformation. Our results demonstrate that conspiracy language is differentiable and suggest there may exist features of conspiracy language independent of the conspiracy topic. We also present a direction for future work to better understand the unique features of conspiracy language and how they may be used to enhance machine learning techniques.","PeriodicalId":166754,"journal":{"name":"Proceedings of the 2022 Computers and People Research Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Computers and People Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510606.3551895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent events have illustrated the danger of online conspiracy theories to cause harm in the real world. In this research in progress, we focus on machine learning techniques to differentiate conspiracy information from other forms of misinformation. Our results demonstrate that conspiracy language is differentiable and suggest there may exist features of conspiracy language independent of the conspiracy topic. We also present a direction for future work to better understand the unique features of conspiracy language and how they may be used to enhance machine learning techniques.
错误信息文件中阴谋语言的检测
最近的事件表明,网络阴谋论在现实世界中造成伤害的危险。在这项正在进行的研究中,我们专注于机器学习技术,以区分阴谋信息和其他形式的错误信息。我们的研究结果表明,阴谋语言是可微的,并且可能存在与阴谋主题无关的阴谋语言特征。我们还提出了未来工作的方向,以更好地理解阴谋语言的独特特征,以及如何使用它们来增强机器学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信