On scatter matrix estimation in the presence of unknown extra parameters: Mismatched scenario

S. Fortunati, F. Gini, M. Greco
{"title":"On scatter matrix estimation in the presence of unknown extra parameters: Mismatched scenario","authors":"S. Fortunati, F. Gini, M. Greco","doi":"10.1109/EUSIPCO.2016.7760635","DOIUrl":null,"url":null,"abstract":"In this paper, a Constrained Mismatched Maximum Likelihood (CMML) estimator for the joint estimation of the scatter matrix and the power of Complex Elliptically Symmetric (CES) distributed vectors is derived under misspecified data models. Specifically, this estimator is obtained by assuming a Normal model while the data are sampled from a complex t-distribution. The convergence point of such CMML estimator is investigated and its Mean Square Error (MSE) compared with the Constrained Misspecified Cramér-Rao Bound (CMCRB).","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a Constrained Mismatched Maximum Likelihood (CMML) estimator for the joint estimation of the scatter matrix and the power of Complex Elliptically Symmetric (CES) distributed vectors is derived under misspecified data models. Specifically, this estimator is obtained by assuming a Normal model while the data are sampled from a complex t-distribution. The convergence point of such CMML estimator is investigated and its Mean Square Error (MSE) compared with the Constrained Misspecified Cramér-Rao Bound (CMCRB).
存在未知额外参数的散点矩阵估计:不匹配情况
本文给出了在错误数据模型下散射矩阵与复椭圆对称分布向量幂的联合估计的约束错匹配极大似然估计。具体来说,该估计量是通过假设正态模型而从复t分布中采样数据来获得的。研究了该CMML估计量的收敛点,并将其均方误差(MSE)与约束错定cram - rao界(CMCRB)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信