Design of multiple reaction systems for genetic analysis

M. Krishnan, S. Brahmasandra, D. T. Burke, C. Mastrangelo, M. Burns
{"title":"Design of multiple reaction systems for genetic analysis","authors":"M. Krishnan, S. Brahmasandra, D. T. Burke, C. Mastrangelo, M. Burns","doi":"10.1109/MEMSYS.2001.906560","DOIUrl":null,"url":null,"abstract":"Heat-transfer considerations significantly constrain design of multiple reaction microdevices. We present a new methodology for design and fabrication of multiple reaction systems using the concept of heat integration. Heat integration is a design concept that strikes a balance between complete thermal isolation of individual thermal operations and power consumption in a multiple reaction device. It relies on the use of steady-state temperature gradients developed in the substrate, by the actuation of a single reaction chamber, to initiate several reactions at progressively lower temperatures. The use of thermal gradients in this manner eliminates power requirements to heat individual reactions, active temperature control of \"passive\" reaction chambers and power requirement for cooling. Complete thermal isolation on the other hand, requires higher power for device cooling but, unlike the case of heat integration, geometry of component placement is relatively unconstrained.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heat-transfer considerations significantly constrain design of multiple reaction microdevices. We present a new methodology for design and fabrication of multiple reaction systems using the concept of heat integration. Heat integration is a design concept that strikes a balance between complete thermal isolation of individual thermal operations and power consumption in a multiple reaction device. It relies on the use of steady-state temperature gradients developed in the substrate, by the actuation of a single reaction chamber, to initiate several reactions at progressively lower temperatures. The use of thermal gradients in this manner eliminates power requirements to heat individual reactions, active temperature control of "passive" reaction chambers and power requirement for cooling. Complete thermal isolation on the other hand, requires higher power for device cooling but, unlike the case of heat integration, geometry of component placement is relatively unconstrained.
遗传分析多反应系统的设计
传热方面的考虑极大地限制了多反应微器件的设计。我们提出了一种利用热集成概念设计和制造多反应系统的新方法。热集成是一种设计理念,在单个热操作的完全热隔离和多反应装置的功耗之间取得平衡。它依赖于利用在衬底中形成的稳态温度梯度,通过驱动单个反应室,在逐渐降低的温度下启动几个反应。以这种方式使用热梯度消除了加热单个反应的功率要求,“被动”反应室的主动温度控制和冷却的功率要求。另一方面,完全热隔离需要更高的设备冷却功率,但与热集成的情况不同,组件放置的几何形状相对不受限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信