On Fractal Properties for Pre-image Entropy

Teng-San Shih
{"title":"On Fractal Properties for Pre-image Entropy","authors":"Teng-San Shih","doi":"10.9734/psij/2021/v25i1230300","DOIUrl":null,"url":null,"abstract":"Fractal dimension for pre-image entropy is introduced for continuous maps throughout this paper. First we show the definition of pre-image entropy dimension of a dynamical system from different topological versions. Then we give those basic propositions of pre-image entropy dimension and the formula for power inequality and forward generator. Relationships among different types of pre-image entropy dimension are studied and an inequality relating them is given. Some basic examples are provided to compare those values of polynomial growth type with the pre-image entropy dimension. After that, this study constructs a symbolic subspace to attain any value between 0 and 1 for pre-image entropy dimension.","PeriodicalId":124795,"journal":{"name":"Physical Science International Journal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Science International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/psij/2021/v25i1230300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fractal dimension for pre-image entropy is introduced for continuous maps throughout this paper. First we show the definition of pre-image entropy dimension of a dynamical system from different topological versions. Then we give those basic propositions of pre-image entropy dimension and the formula for power inequality and forward generator. Relationships among different types of pre-image entropy dimension are studied and an inequality relating them is given. Some basic examples are provided to compare those values of polynomial growth type with the pre-image entropy dimension. After that, this study constructs a symbolic subspace to attain any value between 0 and 1 for pre-image entropy dimension.
关于预像熵的分形性质
本文介绍了连续映射中预像熵的分形维数。首先给出了不同拓扑形式下动态系统的像前熵维的定义。然后给出了预像熵维的基本命题以及功率不等式和正演发生器的计算公式。研究了不同类型的预像熵维之间的关系,并给出了它们之间的一个不等式。给出了一些基本的例子来比较这些多项式生长型的值与图像前熵维。在此基础上,本研究构建了一个符号子空间,使预像熵维在0 ~ 1之间任意取值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信