Structure, Morphology, and Magnetic Properties of New Multiferroic Nanocomposite Obtained by High-Pressure Torsion

Chunrui Song, N. Liedienov, A. Pashchenko, I. Fesych, G. Levchenko, Wei Xu
{"title":"Structure, Morphology, and Magnetic Properties of New Multiferroic Nanocomposite Obtained by High-Pressure Torsion","authors":"Chunrui Song, N. Liedienov, A. Pashchenko, I. Fesych, G. Levchenko, Wei Xu","doi":"10.1109/ELNANO54667.2022.9927051","DOIUrl":null,"url":null,"abstract":"Structure, morphology, chemical composition, and magnetic properties of the new multiferroic nanocomposite have been investigated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and magnetic methods. The $0.8\\mathbf{Bi}_{0.9}\\mathbf{La}_{0.1}\\mathbf{FeO}_{3}-0.2\\mathbf{Mn}_{0.6}\\mathbf{Zn}_{0.3}\\mathbf{FeO}_{4}$ nanocomposite has been prepared by the high-pressure torsion method from the powder mixture consisting of 80 wt.% $\\mathbf{Bi}_{0.9}\\mathbf{La}_{0.1}\\mathbf{FeO}_{3}$ and 20 wt.% $\\mathbf{Mn}_{0.6}\\mathbf{Zn}_{0.3}\\mathbf{FeO}_{4}$. According to the structural data, the particle size of the initial stochiometric powders decreases dramatically from 131 to 14 nm for the $\\mathbf{Bi}_{0.9}\\mathbf{La}_{0.1}\\mathbf{FeO}_{3}$ fractions and from 15 to 12 nm for the $\\mathbf{Mn}_{0.6}\\mathbf{Zn}_{0.3}\\mathbf{FeO}_{4}$ fractions after the high-pressure torsion. Based on the analysis of the magnetic data, the $\\mathbf{Bi}_{0.9}\\mathbf{La}_{0.1}\\mathbf{FeO}_{3}$ multiferroic and $\\mathbf{Mn}_{0.6}\\mathbf{Zn}_{0.3}\\mathbf{FeO}_{4}$ ferrospinel show weak and strong ferromagnetic behaviors, respectively. The combination of the multiferroic $\\mathbf{Bi}_{0.9}\\mathbf{La}_{0.1}\\mathbf{FeO}_{3}$ and ferromagnetic $\\mathbf{Mn}_{0.6}\\mathbf{Zn}_{0.3}\\mathbf{FeO}_{4}$ phases has improved the magnetoelectric coupling of the new nanocomposite.","PeriodicalId":178034,"journal":{"name":"2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO54667.2022.9927051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structure, morphology, chemical composition, and magnetic properties of the new multiferroic nanocomposite have been investigated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and magnetic methods. The $0.8\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}-0.2\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$ nanocomposite has been prepared by the high-pressure torsion method from the powder mixture consisting of 80 wt.% $\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}$ and 20 wt.% $\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$. According to the structural data, the particle size of the initial stochiometric powders decreases dramatically from 131 to 14 nm for the $\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}$ fractions and from 15 to 12 nm for the $\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$ fractions after the high-pressure torsion. Based on the analysis of the magnetic data, the $\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}$ multiferroic and $\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$ ferrospinel show weak and strong ferromagnetic behaviors, respectively. The combination of the multiferroic $\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}$ and ferromagnetic $\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$ phases has improved the magnetoelectric coupling of the new nanocomposite.
高压扭转制备的新型多铁纳米复合材料的结构、形貌和磁性能
利用x射线衍射、扫描电子显微镜、能量色散x射线光谱学、透射电子显微镜、高分辨率透射电子显微镜和磁性方法研究了新型多铁纳米复合材料的结构、形貌、化学成分和磁性能。以80 wt.% $\mathbf{Bi} {0.9}\mathbf{La}} {0.1}\mathbf{FeO} {3}-0.2\mathbf{Mn} {0.6}\mathbf{Zn}{3}$和20 wt.% $\mathbf{Mn} {0.6}\mathbf{Zn} {0.3}\mathbf{FeO}{4}$为原料,采用高压扭转法制备了$0.8\mathbf{Bi}} {0.9}\mathbf{La}} {0.1}\mathbf{FeO}}$的粉末复合材料。根据结构数据,经过高压扭转后,$\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}$的初始粒径从131 nm急剧减小到14 nm, $\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$的初始粒径从15 nm急剧减小到12 nm。根据磁性数据分析,$\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}$多铁磁性和$\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$铁尖晶石分别表现为弱铁磁性和强铁磁性。多铁性$\mathbf{Bi}_{0.9}\mathbf{La}_{0.1}\mathbf{FeO}_{3}$相与铁磁性$\mathbf{Mn}_{0.6}\mathbf{Zn}_{0.3}\mathbf{FeO}_{4}$相的结合改善了新型纳米复合材料的磁电耦合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信