Autonomous fault detection for performance bugs in component-based robotic systems

Johannes Wienke, S. Wrede
{"title":"Autonomous fault detection for performance bugs in component-based robotic systems","authors":"Johannes Wienke, S. Wrede","doi":"10.1109/IROS.2016.7759507","DOIUrl":null,"url":null,"abstract":"We present a novel fault detection method for application in component-based robotic systems. In contrast to existing work, our method specifically addresses faults in the software system of the robot using a data-driven methodology which exploits the inter-process communication of the system. This enables an application of the approach without expert knowledge or availability of complex software models. We specifically focus on performance bugs, which slowly degrade the performance of the system and are thereby harder to detect but also most valuable for automatic recovery. Using a data set recorded on a RoboCup@Home platform we demonstrate the performance and applicability of our method and analyze the types of faults that can be detected by the method.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present a novel fault detection method for application in component-based robotic systems. In contrast to existing work, our method specifically addresses faults in the software system of the robot using a data-driven methodology which exploits the inter-process communication of the system. This enables an application of the approach without expert knowledge or availability of complex software models. We specifically focus on performance bugs, which slowly degrade the performance of the system and are thereby harder to detect but also most valuable for automatic recovery. Using a data set recorded on a RoboCup@Home platform we demonstrate the performance and applicability of our method and analyze the types of faults that can be detected by the method.
基于组件的机器人系统性能缺陷的自动故障检测
提出了一种适用于基于部件的机器人系统的新型故障检测方法。与现有工作相比,我们的方法使用数据驱动的方法专门解决机器人软件系统中的故障,该方法利用系统的进程间通信。这使得在没有专家知识或复杂软件模型可用性的情况下应用该方法成为可能。我们特别关注性能错误,这些错误会慢慢降低系统的性能,因此很难检测到,但对于自动恢复也是最有价值的。通过在RoboCup@Home平台上记录的数据集,我们证明了该方法的性能和适用性,并分析了该方法可以检测到的故障类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信