{"title":"Unconditionally stable FDTD algorithm for solving three-dimensional Maxwell's equations","authors":"T. Namiki","doi":"10.1109/MWSYM.2000.860955","DOIUrl":null,"url":null,"abstract":"We previously introduced an unconditionally stable FDTD algorithm for a two-dimensional TE wave. This algorithm is based on the alternating-direction implicit (ADI) method, so we have called this new algorithm the ADI-FDTD method. We analytically and numerically verified that the algorithm of this method is free from the Courant-Friedrich-Levy condition restraint. In this paper, we extend this approach to a full three-dimensional wave. Numerical formulations are presented and simulation results are compared to those using the conventional FDTD method.","PeriodicalId":149404,"journal":{"name":"2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2000.860955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We previously introduced an unconditionally stable FDTD algorithm for a two-dimensional TE wave. This algorithm is based on the alternating-direction implicit (ADI) method, so we have called this new algorithm the ADI-FDTD method. We analytically and numerically verified that the algorithm of this method is free from the Courant-Friedrich-Levy condition restraint. In this paper, we extend this approach to a full three-dimensional wave. Numerical formulations are presented and simulation results are compared to those using the conventional FDTD method.