Unconditionally stable FDTD algorithm for solving three-dimensional Maxwell's equations

T. Namiki
{"title":"Unconditionally stable FDTD algorithm for solving three-dimensional Maxwell's equations","authors":"T. Namiki","doi":"10.1109/MWSYM.2000.860955","DOIUrl":null,"url":null,"abstract":"We previously introduced an unconditionally stable FDTD algorithm for a two-dimensional TE wave. This algorithm is based on the alternating-direction implicit (ADI) method, so we have called this new algorithm the ADI-FDTD method. We analytically and numerically verified that the algorithm of this method is free from the Courant-Friedrich-Levy condition restraint. In this paper, we extend this approach to a full three-dimensional wave. Numerical formulations are presented and simulation results are compared to those using the conventional FDTD method.","PeriodicalId":149404,"journal":{"name":"2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2000.860955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We previously introduced an unconditionally stable FDTD algorithm for a two-dimensional TE wave. This algorithm is based on the alternating-direction implicit (ADI) method, so we have called this new algorithm the ADI-FDTD method. We analytically and numerically verified that the algorithm of this method is free from the Courant-Friedrich-Levy condition restraint. In this paper, we extend this approach to a full three-dimensional wave. Numerical formulations are presented and simulation results are compared to those using the conventional FDTD method.
求解三维麦克斯韦方程组的无条件稳定FDTD算法
我们之前介绍了二维TE波的无条件稳定时域有限差分算法。该算法基于交替方向隐式(ADI)方法,因此我们将该算法称为ADI- fdtd方法。分析和数值验证了该算法不受Courant-Friedrich-Levy条件约束。在本文中,我们将这种方法扩展到一个完整的三维波。给出了数值计算公式,并与传统时域有限差分法的仿真结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信