Evaluation of Some Physicochemical Parameters of Compost Produced from Coffee Pulp and Locally Available Organic Matter at Dale District, Southern Ethiopia
{"title":"Evaluation of Some Physicochemical Parameters of Compost Produced from Coffee Pulp and Locally Available Organic Matter at Dale District, Southern Ethiopia","authors":"Giche Yadesa Hirpa","doi":"10.21203/rs.3.rs-26668/v1","DOIUrl":null,"url":null,"abstract":"Background: Inadequate disposal of coffee waste have led to serious environmental problems, and requiring efficient measures to recycling these wastes. Composting is thus, environmental friendly option for utilization of this waste. Therefore this study was to evaluate some physicochemical parameters of compost produced from coffee pulp with cow dung and enset leaf (Ensete ventricosum).Results: Treatments were built in randomized complete block design with proportions of treatment one (90% of coffee pulp and 10% of top soil), treatment two (65% of coffee pulp, 25% of cow dung and 10% of top soil), treatment three (65% of coffee pulp, 25% of enset leaf and 10% of top soil) and treatment four (50% of coffee pulp, 20% of cow dung, 20% of enset leaf and 10% of top soil). It conducted for 80 days, from December 28, 2018 to March 17, 2019. Some physicochemical parameters were determined at 25, 55 and 80 days of composting and mean value of bulk density, moisture content, pH, electric conductivity, organic matter, total organic carbon, total nitrogen, total phosphorous, total potassium and C/N ratio were 483.6 kg/m3–487.11 kg/m3, 50.74–52.43%, 7.45–8.36, 3.08mS/cm-3.42mS/cm, 45.26%-46.99%, 26.19%-27.27%, 1.54%-1.61%, 0.41%-0.59%, 0.75%-1.15% and 17.5-18.44 respectively.Conclusions: pH of treatment four was more neutral than from all and total potassium of treatment four was more nutrient content than the rest. Thus, experimental results showed that treatment four was better for quality compost preparation and provides baseline information for coffee pulp waste management simultaneously.","PeriodicalId":284331,"journal":{"name":"American Journal of Bioscience and Bioengineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Bioscience and Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-26668/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Inadequate disposal of coffee waste have led to serious environmental problems, and requiring efficient measures to recycling these wastes. Composting is thus, environmental friendly option for utilization of this waste. Therefore this study was to evaluate some physicochemical parameters of compost produced from coffee pulp with cow dung and enset leaf (Ensete ventricosum).Results: Treatments were built in randomized complete block design with proportions of treatment one (90% of coffee pulp and 10% of top soil), treatment two (65% of coffee pulp, 25% of cow dung and 10% of top soil), treatment three (65% of coffee pulp, 25% of enset leaf and 10% of top soil) and treatment four (50% of coffee pulp, 20% of cow dung, 20% of enset leaf and 10% of top soil). It conducted for 80 days, from December 28, 2018 to March 17, 2019. Some physicochemical parameters were determined at 25, 55 and 80 days of composting and mean value of bulk density, moisture content, pH, electric conductivity, organic matter, total organic carbon, total nitrogen, total phosphorous, total potassium and C/N ratio were 483.6 kg/m3–487.11 kg/m3, 50.74–52.43%, 7.45–8.36, 3.08mS/cm-3.42mS/cm, 45.26%-46.99%, 26.19%-27.27%, 1.54%-1.61%, 0.41%-0.59%, 0.75%-1.15% and 17.5-18.44 respectively.Conclusions: pH of treatment four was more neutral than from all and total potassium of treatment four was more nutrient content than the rest. Thus, experimental results showed that treatment four was better for quality compost preparation and provides baseline information for coffee pulp waste management simultaneously.