{"title":"Application of GaN device to MHz operating grid-tied inverter using discontinuous current mode for compact and efficient power conversion","authors":"Daichi Yamanodera, T. Isobe, H. Tadano","doi":"10.1109/PEDS.2017.8289255","DOIUrl":null,"url":null,"abstract":"This paper studies on a grid-connecting inverter using a gallium nitride (GaN) device aiming for passive components size reduction by very high switching frequency operation. This paper proposes to apply a discontinuous current mode (DCM), which does not require dead-time and current feedback control, which are usually required for a continuous current mode (CCM) operation. These features enable a good modulation performance with a MHz-class high switching frequency operation without difficulties coming from the very high switching frequency. This paper reports experimental demonstrations of the DCM gridconnecting inverter using GaN- high electron mobility transistors (GaN-HEMT) with 1 MHz carrier frequency, and discusses output current harmonics and losses.","PeriodicalId":411916,"journal":{"name":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.2017.8289255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper studies on a grid-connecting inverter using a gallium nitride (GaN) device aiming for passive components size reduction by very high switching frequency operation. This paper proposes to apply a discontinuous current mode (DCM), which does not require dead-time and current feedback control, which are usually required for a continuous current mode (CCM) operation. These features enable a good modulation performance with a MHz-class high switching frequency operation without difficulties coming from the very high switching frequency. This paper reports experimental demonstrations of the DCM gridconnecting inverter using GaN- high electron mobility transistors (GaN-HEMT) with 1 MHz carrier frequency, and discusses output current harmonics and losses.