Multidimensional mining of big social data for supporting advanced big data analytics

A. Cuzzocrea
{"title":"Multidimensional mining of big social data for supporting advanced big data analytics","authors":"A. Cuzzocrea","doi":"10.23919/MIPRO.2017.7973630","DOIUrl":null,"url":null,"abstract":"Big social data are now everywhere. They constitute a rich source of knowledge that is prone to be explored and mined in order to support advanced big data analytics. Multidimensional mining identifies a promising collection of tools to this end. Following this recent trend, in this paper, we provide an overview on two state-of-the-art proposals that show how big data analytics over big social data work in practice.","PeriodicalId":203046,"journal":{"name":"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIPRO.2017.7973630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Big social data are now everywhere. They constitute a rich source of knowledge that is prone to be explored and mined in order to support advanced big data analytics. Multidimensional mining identifies a promising collection of tools to this end. Following this recent trend, in this paper, we provide an overview on two state-of-the-art proposals that show how big data analytics over big social data work in practice.
多维社会大数据挖掘,支持高级大数据分析
如今,社交大数据无处不在。它们构成了丰富的知识来源,易于探索和挖掘,以支持高级大数据分析。多维挖掘为实现这一目标确定了一组有前途的工具。根据这一最新趋势,在本文中,我们概述了两个最先进的建议,这些建议显示了大数据分析如何在大社会数据中工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信