A Perturbed Particle Swarm Optimization using Harmony Search and Mutation

Wikrom Phuchan, B. Kruatrachue
{"title":"A Perturbed Particle Swarm Optimization using Harmony Search and Mutation","authors":"Wikrom Phuchan, B. Kruatrachue","doi":"10.1109/ICEAST50382.2020.9165425","DOIUrl":null,"url":null,"abstract":"This paper applies the harmony search (HS) and mutation to lessens the stagnant of PSO. When a particle stops improving, it is mutated or replace by a position value created from harmony memory, which memorized improve locations of particles (Pbest) in search space. Another HS generates the best position among all particles (Gbest) to replace stagnant Gbest to sway the swarm from the trapping location. This HS has another harmony memory that contains improving Gbest. The results of the proposed algorithm are compared with related modified-PSO using 27 benchmark functions. The proposed algorithm locates optimum in more benchmark functions with faster execution.","PeriodicalId":224375,"journal":{"name":"2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST50382.2020.9165425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper applies the harmony search (HS) and mutation to lessens the stagnant of PSO. When a particle stops improving, it is mutated or replace by a position value created from harmony memory, which memorized improve locations of particles (Pbest) in search space. Another HS generates the best position among all particles (Gbest) to replace stagnant Gbest to sway the swarm from the trapping location. This HS has another harmony memory that contains improving Gbest. The results of the proposed algorithm are compared with related modified-PSO using 27 benchmark functions. The proposed algorithm locates optimum in more benchmark functions with faster execution.
基于和谐搜索和变异的扰动粒子群优化
本文采用和谐搜索和变异来改善粒子群算法的停滞性。当一个粒子停止改进时,它被突变或替换为一个由和谐记忆创建的位置值,该位置值存储了粒子在搜索空间中的改进位置(Pbest)。另一个HS在所有粒子中产生最佳位置(Gbest)来取代停滞的Gbest,使群体从捕获位置摇摆。这个HS有另一个包含改进Gbest的和谐存储器。利用27个基准函数将该算法的结果与相关的改进粒子群算法进行了比较。该算法在更多的基准函数中寻优,执行速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信