{"title":"Allocation of RAM built-in self-repair circuits for SOC dies of 3D ICs","authors":"Chih-Sheng Hou, Jin-Fu Li","doi":"10.1109/VTS.2013.6548940","DOIUrl":null,"url":null,"abstract":"A modern system-on-chip (SOC) may become one of the dies of a three-dimensional (3D) IC using through-silicon via (TSV). Built-in self-repair (BISR) techniques have been widely used to improve the yield of RAMs in a SOC. This paper proposes a memory BISR allocation scheme to allocate shared BISR circuits for RAMs in a SOC die such that the test and repair time and the area of BISR circuits are minimized. To minimize the test and repair time of RAMs in the pre-bond and post-bond test phases, a test scheduling engine is used to determine the pre-bond and post-bond test sequences of RAMs under the corresponding test power constraints. Then, a BISR-circuit minimization algorithm is proposed to reduce the number of required shared BISR circuits for the RAMs under the constraints of pre-bond and post-bond test sequences and distance between the BISR circuit and served RAMs. Simulation results show that in comparison with a dedicated BISR scheme (i.e., each RAM has a self-contained BISR circuit), 35% area reduction can be achieved by the shared BISR scheme planned by the proposed allocation technique under lmm distance constraint, and 500mW and 600mW pre-bond and post-bond test power constraints, respectively.","PeriodicalId":138435,"journal":{"name":"2013 IEEE 31st VLSI Test Symposium (VTS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2013.6548940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A modern system-on-chip (SOC) may become one of the dies of a three-dimensional (3D) IC using through-silicon via (TSV). Built-in self-repair (BISR) techniques have been widely used to improve the yield of RAMs in a SOC. This paper proposes a memory BISR allocation scheme to allocate shared BISR circuits for RAMs in a SOC die such that the test and repair time and the area of BISR circuits are minimized. To minimize the test and repair time of RAMs in the pre-bond and post-bond test phases, a test scheduling engine is used to determine the pre-bond and post-bond test sequences of RAMs under the corresponding test power constraints. Then, a BISR-circuit minimization algorithm is proposed to reduce the number of required shared BISR circuits for the RAMs under the constraints of pre-bond and post-bond test sequences and distance between the BISR circuit and served RAMs. Simulation results show that in comparison with a dedicated BISR scheme (i.e., each RAM has a self-contained BISR circuit), 35% area reduction can be achieved by the shared BISR scheme planned by the proposed allocation technique under lmm distance constraint, and 500mW and 600mW pre-bond and post-bond test power constraints, respectively.