{"title":"Dynamic Mean-Variance Asset Allocation","authors":"Suleyman Basak, G. Chabakauri","doi":"10.2139/ssrn.965926","DOIUrl":null,"url":null,"abstract":"Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in the explicit computation of portfolios. We solve the problem by explicitly recognizing the time-inconsistency of the mean-variance criterion and deriving a recursive representation for it, which makes dynamic programming applicable. We further show that our time-consistent solution is generically different from the pre-commitment solutions in the extant literature, which maximize the mean-variance criterion at an initial date and which the investor commits to follow despite incentives to deviate. We illustrate the usefulness of our analysis by explicitly computing dynamic mean-variance portfolios under various stochastic investment opportunities in a straightforward way, which does not involve solving a Hamilton-Jacobi-Bellman differential equation. A calibration exercise shows that the mean-variance hedging demands may comprise a significant fraction of the investor's total risky asset demand.","PeriodicalId":355236,"journal":{"name":"AFA 2009 San Francisco Meetings (Archive)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"535","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFA 2009 San Francisco Meetings (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.965926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 535
Abstract
Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in the explicit computation of portfolios. We solve the problem by explicitly recognizing the time-inconsistency of the mean-variance criterion and deriving a recursive representation for it, which makes dynamic programming applicable. We further show that our time-consistent solution is generically different from the pre-commitment solutions in the extant literature, which maximize the mean-variance criterion at an initial date and which the investor commits to follow despite incentives to deviate. We illustrate the usefulness of our analysis by explicitly computing dynamic mean-variance portfolios under various stochastic investment opportunities in a straightforward way, which does not involve solving a Hamilton-Jacobi-Bellman differential equation. A calibration exercise shows that the mean-variance hedging demands may comprise a significant fraction of the investor's total risky asset demand.