Ideal regenerative braking torque in collaboration with hydraulic brake system

J. Nadeau, P. Micheau, M. Boisvert
{"title":"Ideal regenerative braking torque in collaboration with hydraulic brake system","authors":"J. Nadeau, P. Micheau, M. Boisvert","doi":"10.1109/EVER.2017.7935934","DOIUrl":null,"url":null,"abstract":"In the presented hybrid vehicle, the electric motor is used in collaboration with the hydraulic brake system to impose an ideal braking torque to the rear wheel. This, in order to recharge the battery. The first objective aims to recover the maximum kinetic energy available. To achieve this task, the electric motor is used until the reach of its torque limits while an additional hydraulic brake force is exerted at the rear wheel only when it is needed. The second objective aims to improve the brake efficiency by performing the tracking of the ideal brake force distribution. An original aspect of this paper is the proposal of a brake force distribution strategy between the front and rear axles which is based on the tracking of the ideal brake torque (I-curve). The experimental results obtained with a recreational three-wheel electric vehicle validates the implementation of the proposed ideal collaborative braking control strategy.","PeriodicalId":395329,"journal":{"name":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2017.7935934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the presented hybrid vehicle, the electric motor is used in collaboration with the hydraulic brake system to impose an ideal braking torque to the rear wheel. This, in order to recharge the battery. The first objective aims to recover the maximum kinetic energy available. To achieve this task, the electric motor is used until the reach of its torque limits while an additional hydraulic brake force is exerted at the rear wheel only when it is needed. The second objective aims to improve the brake efficiency by performing the tracking of the ideal brake force distribution. An original aspect of this paper is the proposal of a brake force distribution strategy between the front and rear axles which is based on the tracking of the ideal brake torque (I-curve). The experimental results obtained with a recreational three-wheel electric vehicle validates the implementation of the proposed ideal collaborative braking control strategy.
理想的再生制动扭矩配合液压制动系统
在混合动力汽车中,电动机与液压制动系统协同使用,为后轮施加理想的制动扭矩。这是为了给电池充电。第一个目标是恢复可用的最大动能。为了完成这项任务,电动马达被使用,直到达到其扭矩极限,而额外的液压制动力只在需要时施加在后轮上。第二个目标是通过跟踪理想制动力分布来提高制动效率。本文的一个新颖之处是提出了一种基于理想制动扭矩(i曲线)跟踪的前后轴制动力分配策略。在一辆休闲三轮电动汽车上的实验结果验证了所提出的理想协同制动控制策略的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信