{"title":"Content-Based Movie Recommendation within Learning Contexts","authors":"Ricardo Kawase, B. Nunes, Patrick Siehndel","doi":"10.1109/ICALT.2013.53","DOIUrl":null,"url":null,"abstract":"A good movie is like a good book. As a good book can serve entertaining and learning purposes, so does a movie. In addition to that, movies are in general more engaging and reach a wider audience. In this work, we present and evaluate a method that overcomes the challenge of generating recommendations among heterogeneous resources. In our case, we recommend movies in the context of a learning object. We evaluate our method with 60 participants that judged the relevance of the recommendations. Results show that, in over 74% of the cases the recommendations are in fact related to the given learning object, outperforming a text-based recommendation approach. The implications of our work can take learning outside the classroom and invoke it during the joy of watching a movie.","PeriodicalId":301310,"journal":{"name":"2013 IEEE 13th International Conference on Advanced Learning Technologies","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2013.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A good movie is like a good book. As a good book can serve entertaining and learning purposes, so does a movie. In addition to that, movies are in general more engaging and reach a wider audience. In this work, we present and evaluate a method that overcomes the challenge of generating recommendations among heterogeneous resources. In our case, we recommend movies in the context of a learning object. We evaluate our method with 60 participants that judged the relevance of the recommendations. Results show that, in over 74% of the cases the recommendations are in fact related to the given learning object, outperforming a text-based recommendation approach. The implications of our work can take learning outside the classroom and invoke it during the joy of watching a movie.