RACER - a rapid prototyping accelerator for pulsed neural networks

Cyprian Grassmann, J. Anlauf
{"title":"RACER - a rapid prototyping accelerator for pulsed neural networks","authors":"Cyprian Grassmann, J. Anlauf","doi":"10.1109/FPGA.2002.1106683","DOIUrl":null,"url":null,"abstract":"In this extended abstract we sketch the employment of programmable logic for the acceleration of the simulation of pulsed neural networks. We compare our approach to solutions which are based on DSPs and digital neuroprocessors. Our solution is a rapid prototyping accelerator board which is based on a data flow concept. The accelerator provides three module sockets with a rather simple 32Bit interface. The design is focused on a maximal data through-put to and from each module. Due to the architecture a very high parallelism between the modules can be achieved Two programmable devices on each module are supported by the on-board programming and test unit, which provides in-circuit programming by the host during operation. As a result the accelerator delivers a high performance and flexibility without introducing a complex interface or handling. Any programmable device, FPGA, CPLD or special architectures like Kress-Arrays may be used on a module of this accelerator board, hence coarse and fine grain architectures can be used.","PeriodicalId":272235,"journal":{"name":"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.2002.1106683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this extended abstract we sketch the employment of programmable logic for the acceleration of the simulation of pulsed neural networks. We compare our approach to solutions which are based on DSPs and digital neuroprocessors. Our solution is a rapid prototyping accelerator board which is based on a data flow concept. The accelerator provides three module sockets with a rather simple 32Bit interface. The design is focused on a maximal data through-put to and from each module. Due to the architecture a very high parallelism between the modules can be achieved Two programmable devices on each module are supported by the on-board programming and test unit, which provides in-circuit programming by the host during operation. As a result the accelerator delivers a high performance and flexibility without introducing a complex interface or handling. Any programmable device, FPGA, CPLD or special architectures like Kress-Arrays may be used on a module of this accelerator board, hence coarse and fine grain architectures can be used.
RACER -脉冲神经网络的快速原型加速器
在这篇扩展摘要中,我们概述了可编程逻辑在脉冲神经网络仿真加速中的应用。我们将我们的方法与基于dsp和数字神经处理器的解决方案进行比较。我们的解决方案是一个基于数据流概念的快速原型加速器板。加速器提供了三个模块插座与一个相当简单的32位接口。设计的重点是最大的数据吞吐量和从每个模块。由于该架构,模块之间可以实现很高的并行性,每个模块上有两个可编程器件,由板载编程和测试单元支持,在运行过程中提供主机的在线编程。因此,加速器提供了高性能和灵活性,而无需引入复杂的接口或处理。任何可编程器件、FPGA、CPLD或特殊架构(如Kress-Arrays)都可以在该加速板的模块上使用,因此可以使用粗粒度和细粒度架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信