Iterative Loewner Matrix Macromodeling using CUR Decomposition for Noisy Frequency Responses

Mohamed Sahouli, A. Dounavis
{"title":"Iterative Loewner Matrix Macromodeling using CUR Decomposition for Noisy Frequency Responses","authors":"Mohamed Sahouli, A. Dounavis","doi":"10.1109/EPEPS47316.2019.193223","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient macromodeling technique for modeling distributed circuits characterized by noisy frequency-domain data. The proposed method is based on an iterative Loewner matrix (LM) approach. Using the LM approximation of previous iterations, state space matrices of the system are made to be more accurate. This approach is shown to minimize the biasing effect of the noisy data resulting in more accurate poles and residues while reducing the computation time by taking advantage of CUR decomposition instead of using the usual singular value decomposition (SVD) decomposition. A numerical example is presented to illustrate the efficiency of the proposed method.","PeriodicalId":304228,"journal":{"name":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS47316.2019.193223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an efficient macromodeling technique for modeling distributed circuits characterized by noisy frequency-domain data. The proposed method is based on an iterative Loewner matrix (LM) approach. Using the LM approximation of previous iterations, state space matrices of the system are made to be more accurate. This approach is shown to minimize the biasing effect of the noisy data resulting in more accurate poles and residues while reducing the computation time by taking advantage of CUR decomposition instead of using the usual singular value decomposition (SVD) decomposition. A numerical example is presented to illustrate the efficiency of the proposed method.
利用CUR分解进行噪声频率响应的迭代lower - ner矩阵宏建模
本文提出了一种高效的宏观建模技术,用于对具有噪声频域数据特征的分布式电路进行建模。所提出的方法是基于迭代Loewner矩阵(LM)方法。利用对前几次迭代的LM逼近,使系统的状态空间矩阵更加精确。该方法可以最大限度地减少噪声数据的偏置影响,从而获得更精确的极点和残差,同时通过利用CUR分解而不是使用通常的奇异值分解(SVD)分解来减少计算时间。算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信