Comparing and combining GPU and FPGA accelerators in an image processing context

B. Silva, An Braeken, E. D'Hollander, A. Touhafi, Jan G. Cornelis, J. Lemeire
{"title":"Comparing and combining GPU and FPGA accelerators in an image processing context","authors":"B. Silva, An Braeken, E. D'Hollander, A. Touhafi, Jan G. Cornelis, J. Lemeire","doi":"10.1109/FPL.2013.6645552","DOIUrl":null,"url":null,"abstract":"Nowadays, processors alone cannot deliver what computation hungry image processing applications demand. An alternative is to use hardware accelerators such as Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs). Applications, however, exhibit different performance characteristics depending on the accelerator. This paper describes the hybrid platform and the programming environment that allows to efficiently create programs on a combined GPU/FPGA desktop. We use the roofline model to identify the most appropriate accelerator for each application and High-Level Synthesis (HLS) tools to reduce the FPGA development time. To introduce our platform and tool chain both accelerators are compared by implementing a basic image operation. Next, a promising algorithm is explored and implemented, splitting and distributing the work between GPU, FPGA and CPU in order to validate the hybrid concept. Our results show that their combination exhibits a higher performance for computational intensive image processing applications than a GPU only.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Nowadays, processors alone cannot deliver what computation hungry image processing applications demand. An alternative is to use hardware accelerators such as Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs). Applications, however, exhibit different performance characteristics depending on the accelerator. This paper describes the hybrid platform and the programming environment that allows to efficiently create programs on a combined GPU/FPGA desktop. We use the roofline model to identify the most appropriate accelerator for each application and High-Level Synthesis (HLS) tools to reduce the FPGA development time. To introduce our platform and tool chain both accelerators are compared by implementing a basic image operation. Next, a promising algorithm is explored and implemented, splitting and distributing the work between GPU, FPGA and CPU in order to validate the hybrid concept. Our results show that their combination exhibits a higher performance for computational intensive image processing applications than a GPU only.
在图像处理环境中比较和组合GPU和FPGA加速器
如今,单靠处理器无法满足需要大量计算的图像处理应用的需求。另一种选择是使用硬件加速器,如图形处理单元(gpu)或现场可编程门阵列(fpga)。但是,应用程序根据加速器的不同表现出不同的性能特征。本文描述了在GPU/FPGA组合桌面上高效创建程序的混合平台和编程环境。我们使用屋顶线模型为每个应用确定最合适的加速器和高级合成(HLS)工具,以减少FPGA开发时间。为了介绍我们的平台和工具链,通过实现一个基本的图像操作来比较两个加速器。接下来,探索并实现了一种有前途的算法,将工作在GPU、FPGA和CPU之间进行拆分和分配,以验证混合概念。我们的研究结果表明,它们的组合在计算密集型图像处理应用中表现出比仅使用GPU更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信