State estimation for UAVs using sensor fusion

Zsófia Bodó, B. Lantos
{"title":"State estimation for UAVs using sensor fusion","authors":"Zsófia Bodó, B. Lantos","doi":"10.1109/SISY.2017.8080535","DOIUrl":null,"url":null,"abstract":"In this paper an improved approach is presented for the state estimation of unmanned aerial vehicles (UAVs). The three-loop technique is based on Extended Kalman Filters. From them EKF1 solve the quaternion based orientation (attitude) estimation using IMU and magnetometer. EKF2 improves the attitude estimation if GPS information is present. The third filter EKF3 determines the remaining state variables including the biases in an external loop if GPS measurement is available and tolerates the large difference between IMU and GPS frequencies. The method can be applied for state estimation of any type of vehicles. It is especially useful for vehicles having large (2–3 G) acceleration changes typical for UAVs. The results can later be used for identification of the nonlinear dynamic model of vehicles (control surface, thrust and inertia effects) building the basis for advanced control.","PeriodicalId":352891,"journal":{"name":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2017.8080535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper an improved approach is presented for the state estimation of unmanned aerial vehicles (UAVs). The three-loop technique is based on Extended Kalman Filters. From them EKF1 solve the quaternion based orientation (attitude) estimation using IMU and magnetometer. EKF2 improves the attitude estimation if GPS information is present. The third filter EKF3 determines the remaining state variables including the biases in an external loop if GPS measurement is available and tolerates the large difference between IMU and GPS frequencies. The method can be applied for state estimation of any type of vehicles. It is especially useful for vehicles having large (2–3 G) acceleration changes typical for UAVs. The results can later be used for identification of the nonlinear dynamic model of vehicles (control surface, thrust and inertia effects) building the basis for advanced control.
基于传感器融合的无人机状态估计
本文提出了一种改进的无人机状态估计方法。三环技术是基于扩展卡尔曼滤波器的。其中EKF1利用IMU和磁力计解决了基于四元数的方位(姿态)估计问题。EKF2改进了GPS信息存在时的姿态估计。第三个滤波器EKF3确定剩余的状态变量,包括外部环路中的偏差,如果GPS测量可用,并容忍IMU和GPS频率之间的较大差异。该方法可用于任何类型车辆的状态估计。这对于具有较大(2-3 G)加速度变化的车辆(典型的无人机)特别有用。研究结果可用于车辆非线性动力学模型(控制面、推力和惯性效应)的识别,为先进控制奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信