Pedestrian tracking using Velodyne data — Stochastic optimization for extended object tracking

Karl Granström, Stephan Renter, M. Fatemi, L. Svensson
{"title":"Pedestrian tracking using Velodyne data — Stochastic optimization for extended object tracking","authors":"Karl Granström, Stephan Renter, M. Fatemi, L. Svensson","doi":"10.1109/IVS.2017.7995696","DOIUrl":null,"url":null,"abstract":"Environment perception is a key enabling technology in autonomous vehicles, and multiple object tracking is an important part of this. High resolution sensors, such as automotive radar and lidar, leads to the so called extended target tracking problem, in which there are multiple detections per tracked object. For computationally feasible multiple extended target tracking, the data association problem must be handled. Previous work has relied on the use of clustering algorithms, together with assignment algorithms, to achieve this. In this paper we present a stochastic optimisation method that directly maximises the desired likelihood function, and solves the problem in a single step, rather than two steps (clustering+assignment). The proposed method is evaluated against previous work in an experiment where Velodyne data is used to track pedestrians, and the results clearly show that the proposed method achieves the best performance, especially in challenging scenarios.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Environment perception is a key enabling technology in autonomous vehicles, and multiple object tracking is an important part of this. High resolution sensors, such as automotive radar and lidar, leads to the so called extended target tracking problem, in which there are multiple detections per tracked object. For computationally feasible multiple extended target tracking, the data association problem must be handled. Previous work has relied on the use of clustering algorithms, together with assignment algorithms, to achieve this. In this paper we present a stochastic optimisation method that directly maximises the desired likelihood function, and solves the problem in a single step, rather than two steps (clustering+assignment). The proposed method is evaluated against previous work in an experiment where Velodyne data is used to track pedestrians, and the results clearly show that the proposed method achieves the best performance, especially in challenging scenarios.
使用Velodyne数据的行人跟踪-扩展对象跟踪的随机优化
环境感知是自动驾驶汽车的关键使能技术,多目标跟踪是其中的重要组成部分。高分辨率传感器,如汽车雷达和激光雷达,导致所谓的扩展目标跟踪问题,其中每个跟踪目标存在多个检测。为了实现计算可行的多扩展目标跟踪,必须处理数据关联问题。以前的工作依赖于使用聚类算法和分配算法来实现这一点。在本文中,我们提出了一种随机优化方法,该方法直接最大化期望的似然函数,并在单步而不是两步(聚类+分配)中解决问题。在使用Velodyne数据跟踪行人的实验中,将所提出的方法与先前的工作进行了评估,结果清楚地表明,所提出的方法达到了最佳性能,特别是在具有挑战性的场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信