Investigation and performance analysis of OpenVX optimizations on computer vision applications

Djamila Dekkiche, B. Vincke, A. Mérigot
{"title":"Investigation and performance analysis of OpenVX optimizations on computer vision applications","authors":"Djamila Dekkiche, B. Vincke, A. Mérigot","doi":"10.1109/ICARCV.2016.7838782","DOIUrl":null,"url":null,"abstract":"The development of Advanced Driver Assistance Systems (ADAS), such as pedestrian detection, requires real-time update rates at high image resolution. Hopefully, heterogeneous architectures with high computing performance have been developed for this purpose. To benefit from this hardware performance, different programming languages and acceleration frameworks have been developed. OpenVX framework provides a graph-based execution model to program image processing algorithms on heterogeneous platforms. In this work, we investigate OpenVX optimizations for computer vision applications. We examine how this framework responds to different data access patterns. We test three important optimizations of OpenVX: kernels merge, data tiling and parallelization via OpenMP. The contribution and the impact of each optimization on different data access pattern are explained.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The development of Advanced Driver Assistance Systems (ADAS), such as pedestrian detection, requires real-time update rates at high image resolution. Hopefully, heterogeneous architectures with high computing performance have been developed for this purpose. To benefit from this hardware performance, different programming languages and acceleration frameworks have been developed. OpenVX framework provides a graph-based execution model to program image processing algorithms on heterogeneous platforms. In this work, we investigate OpenVX optimizations for computer vision applications. We examine how this framework responds to different data access patterns. We test three important optimizations of OpenVX: kernels merge, data tiling and parallelization via OpenMP. The contribution and the impact of each optimization on different data access pattern are explained.
OpenVX在计算机视觉应用上的优化研究与性能分析
先进驾驶辅助系统(ADAS)的发展,如行人检测,需要高图像分辨率的实时更新速率。希望能够为此目的开发出具有高计算性能的异构体系结构。为了利用这种硬件性能,开发了不同的编程语言和加速框架。OpenVX框架为异构平台上的图像处理算法编程提供了一个基于图形的执行模型。在这项工作中,我们研究了OpenVX对计算机视觉应用的优化。我们将研究该框架如何响应不同的数据访问模式。我们通过OpenMP测试了OpenVX的三个重要优化:内核合并、数据平铺和并行化。解释了每种优化对不同数据访问模式的贡献和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信